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Intensity of singular stress fields of
wedge-shaped defect in human tooth
due to occlusal force before and after
restoration with composite resins

Ker-Kong Chen1, Nao-Aki Noda2, Kiyoshi Tajima3, Yoshikazu Sano2 and
Yasushi Takase2

Abstract
Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previously, most studies
explained that improper tooth-brushing causes such defects. However, recent clinical observation suggested that the
repeated stress due to occlusal force may induce the formation of these wedge-shaped defects. In this study, therefore,
two-dimensional human tooth models are considered with and without a wedge-shaped defect by applying the finite ele-
ment method. To evaluate large stress concentrations accurately, a method of analysis is discussed in terms of the inten-
sity of singular stress fields appearing at the tip of the sharp wedge-shaped defect. The effects of the position and
direction of occlusion on the intensity of singular stress fields are discussed before and after restoration with composite
resins.
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Introduction

Wedge-shaped defects as shown in Figure 1 are fre-
quently observed on the cervical region of the human
tooth. Such types of defects are more frequently
observed in aging people. Therefore, to establish a rem-
edy will become more important in aging society, which
is appearing in Japan and will appear in many other
countries in the near future.

As an early stage of the research, Miller1 proposed
that the wedge-shaped defect is caused by hard tooth-
brush and that was accepted for a long time. Whereas
Bream et al.2 found wedge-shaped defect at the region
hard to be brushed in human mouth. Similarly, Graehn
and Muller3 confirmed wedge-shaped defect in the ani-
mal tooth. Tanaka et al.4 reported that the wedge-
shaped defect exists in the ancients who had not used
toothbrush. Those studies suggested that improper
toothbrush cannot be the only reason for wedge-shaped
defects. Lee and Eakle5 suggested that when occlusion
is not ideal, the tensile stress due to lateral forces may
disrupt the chemical bonds of the crystalline structure
of enamel and dentin. Recently, Chen et al.6 used the

maxillary second premolar and measured the strain to
find out the potential relationship between occlusion
and wedge-shaped defect.

Table 1 shows the number of individual types of
fractures including wedge-shaped defects and the total
number of teeth.7 In this study, 304 extracted maxillary
premolars were investigated. Here, the shapes of defects
are classified into three types, that is, (1) ditch type,
which is minute and can only be detected through
microscope; (2) angular type, whose two faces have
angular corner; and (3) round type, which shapes
curved surface. Those defects were found in 198
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(65.1%) teeth of 304 at the buccal and lingual cervical
regions. It was found in 162 teeth of 198 at only the
buccal cervical regions, in 13 teeth at only the lingual
cervical regions, and in 23 teeth at both the buccal and
lingual. The number of occurrence is 185 teeth in buc-
cal and 36 teeth in lingual as shown in Table 1.

Figure 2(a) and (b) shows two models considered by
Kuroe et al.8,9 as extreme cases for cervical lesion. The
real shape of defect is between the shapes of Figure
2(a) and (b). However, it is too difficult to define the
typical shape and size, so the extreme models shown in
Figure 2(a) and (b) have been used. Generally, it is said
that V-shaped defect as shown in Figure 2(a) appears
when the effect of occlusal force is larger, and round-
type defect as shown in Figure 2(b) is formed from
tooth-brushing effects. Here, the model of Figure 2(a)
has singular stress; however, the singular stress field
(intensity of singular stress field (ISSF)) has not been
discussed in previous studies. Since ISSFs cannot be

calculated easily, in this article, the method of analysis
will be explained. Then the effect of occlusal force on
the ISSFs will be discussed.

In this study, the effect of occlusal force on the
ISSFs will be mainly considered by the application of
finite element method (FEM). Generally, it has been
told that the remedy for wedge-shaped defects is more
difficult than the remedy for dental caries. Therefore,
desirable occlusal force will be proposed from the
viewpoint of mechanics. Figure 2(c) shows the
two-dimensional (2D) model of wedge-shaped defect
considered in this study. The singular stress should be
considered along the bisector of corner B. Figure 2(d)
shows the 2D model of the wedge-shaped defect after
restoration with composite resins. The singular stress
should be considered at corner B and also at the inter-
faced end A. In the previous studies, fracture mechanics
approach was used in several references for human
teeth10–15 and human bone.16–24 Usually, fracture
mechanics assumes crack models. In this study, how-
ever, the FEM is applied to a general model of wedge-
shaped defect. Then the ISSFs will be calculated, and
the effect of the occlusal force on the ISSF will be dis-
cussed before and after restoration with composite
resins.

Materials and methods

Mesh-independent technique to analyze the ISSFs

In this study, the ISSFs have been calculated accurately
for the wedge-shaped defect as shown in Figure 2(c).
Since the shape and structure of human tooth are com-
plex as shown in Figure 1, the numerical solution will
be discussed when the FEM is applied to 2D problems
of wedge-shaped defects. To confirm the accuracy of
the proposed method, the exact solution obtained by
the body force method (BFM) will be used as a refer-
ence solution. Since FEM error is controlled by the
mesh size around the corner, the error can be eliminated
by applying the same mesh to be the unknown problem
and the reference problem.25,26 The BFM has been
applied to a lot of stress concentration problems27,28

including wedge-shaped defects.29–31 The solution in the

Figure 1. Wedge-shaped defect in human tooth: (a) before and
(b) after restoration with composite resins.

Table 1. Number of individual types of fractures and the total
number of teeth.7

Type Buccal Lingual

Ditch 41 9
Angular 66 5
Round 78 22
Total 185 36

Figure 2. Two models (a and b) considered by Kuroe et al. as extreme cases for cervical lesion8,9 and two 2D models (c and d)
considered in this study: (a) wedge-shaped defect, (b) round shaped defect, (c) 2D wedge-shaped defect, and (d) 2D wedge-shaped
defect after restoration.
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BFM is obtained by the superposition of fundamental
solution so as to satisfy a given boundary condition. By
means of these fundamental solutions, all problems can
be solved in principle. The detail of the BFM is indi-
cated in the previous studies.32–35

First, the wedge-shaped notch whose opening angle
g =30�in a strip is considered. As shown in Figure 3(a)
and (b), different notch dimensions are considered. The
ISSFs have been calculated very accurately by Chen and
Nisitani27 for l=b40:5 by applying the BFM. In the
FEM analysis, however, the exact singular stress field
cannot be given from finite numbers of elements. Since
the error due to the finiteness of the division mainly
depends on the mesh around the corner of the notch,36

if the ISSFs are equal for Figure 3(a) and (b) by adjust-
ing s and s0, the stress s

ðbÞ
u;FEM is also nearly equal.

In other words, if the mesh pattern around the notch
corner is the same, the value of K

ðbÞ
I;l1
=s
ðbÞ
u;FEM is constant

independent of the dimension of the notch. To calculate
mode II stress intensity factors, t�ru;FEM can be consid-
ered in a similar way. Namely, we have equation (1)

su
ðbÞ
;FEM

su
ðaÞ
;FEM

=
K
ðbÞ
I;l1

K
ðaÞ
I;l1

ð1aÞ

tru
ðbÞ
;FEM

tru
ðaÞ
;FEM

=
K
ðbÞ
II;l2

K
ðaÞ
II;l2

ð1bÞ

The validity of equation (1) has been confirmed by
the previous studies, for example, in crack problems,37

notched problems,29 and inclusion problems.30 In this
equation, the superscripts a and b indicate the values of
the problems in Figure 3(a) and (b), for example, the

solutions when l=b=0:1 and l=b=0:8. Then K
ðaÞ
I;l1 and

K
ðbÞ
I;l1 mean exact ISSFs from Figure 3(a) and (b), and

s
ðaÞ
u;FEM, s

ðbÞ
u;FEM, t

ðaÞ
ru;FEM, and t

ðbÞ
ru;FEM are the stresses

along the bisector of the notch when the FEM is
applied to the same problems.

Equation (1) means the ratio of ISSF for two
unknown problems can be obtained by applying FEM
easily since FEM error can be eliminated using the
same mesh pattern. If the exact solution is available for
some notch dimensions, the exact ISSF can be obtained
for unknown problems.

The dimensionless ISSFs F
ðaÞ
I;l1
;F
ðbÞ
I;l1

are defined as
in equation (2). Then equation (3) is given from
equation (1)
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If the ISSFs in Figure 3(a) and (b) are equal, we have
K
ðaÞ
I;l1

=K
ðbÞ
I;l1

; then the stress at infinity in Figure 3(b)
can be written as equation (4)

s0=s3
F
ðaÞ
1;l1

F
ðbÞ
1;l1

3
l1�l1

ðl0Þ1�l1
ð4Þ

Therefore, the ISSFs of the problem in question can
be given from the FEM results of the problem in ques-
tion and the reference problem as shown in equation (5)

F
ðbÞ
1;l1

=s
ðbÞ
u;FEM3

F
ðaÞ
1;l1

s
ðaÞ
u;FEM

3
s

s0
3

l1�l1

ðl0Þ1�l1
ð5Þ

In the following sections, the ISSFs of Figure 3 will
be obtained from equation (5) and compared with the
exact solutions. Then the usefulness of the present solu-
tion will be confirmed.

Mesh-independent analysis for sharp V-shaped
notches

First, mode I–type ISSFs are calculated when g =608

and b=08 in Figure 3 with varying l/b=0.1–0.9.
Here, the exact value of l=b=0:1 is used as the refer-
ence solution and then the results of l/b=0.2–0.9 will
be calculated by the application of FEM. Table 2
shows the stress distribution s

ðbÞ
u along the bisector of

the notch when l=b=0:1 with s=1 and then the
results are used as the reference results as s

ðaÞ
u . Here

the mesh around the notch corner is the same as
Figure 5(b), which is shown later. Also, Table 2 shows
the ratio s

ðbÞ
u =s

ðaÞ
u when l=b=0:8 with s =1. As

shown in Table 2, the value of s
ðbÞ
u =s

ðaÞ
u is nearly con-

stant. Then the FI;l1 values are calculated as shown in
Table 3 in comparison to the results of the BFM. It is
seen that the present solution has four-digit accuracy.
The results show that the proposed method provides
accurate ISSFs independent of the mesh size. Table 3
shows that FEM error can be eliminated by applying
the same mesh pattern to the unknown problem and

Figure 3. Sharp notches in a strip when notch depth
(a) l=b40:5 and (b) l0=b50:5.
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the reference problem. The detailed discussion has
been indicated in Zhang et al.25 and Noda et al.26

The present method is found to be useful for deep
notches, l/b=0.6–0.9, whose results were not given
previously.10

Mesh-independent analysis for inclined V-shaped
notch

Around an inclined notch as shown in Table 4, the sin-
gular stress field can be expressed in terms of mixed
mode–type ISSFs as shown in equation (10), (11), and
(13). The ISSFs for g =608 in a strip are given in
Table 4.

Tables 5 and 6 show FEM results for two different
inclined notches with the relative notch depth l=b=0:1
and l0=b=0:2. Here, the remote tensile stresses are
applied so that the mode I stress intensity factors are
equivalent for l=b=0:1 and l0=b=0:2 using the results
of Figure 4. In addition, the same FE mesh pattern is
applied as shown in Figure 5.

Along the bisector of the notch, the stress su is
controlled by KI;l1

as shown in equation (10), and the
stress tru is controlled by KII;l2

as shown in equations
(12) and (13) with u=0. In Table 5, it is seen
that su3r1�l1 and tru3r1�l2 are almost constant, for
example, when l=b=0:1, su ffi 0:756=r1�l1 , and
tru ffi 0:440=r1�l2 .

Table 2. Stress distributions in Figure 3 with confirming equation (1).

i r/l s
ðaÞ
u s

ðaÞ
u 3r1�l1

(a) s
ðaÞ
u = su l=b = 0:1

�� , l=b = 0:1 with s = 1

0 0 34.3679 0
1 0.0412 17.5446 1.1345
2 0.0823 13.0094 1.1885
3 0.1235 10.5938 1.1846
4 0.1646 9.1939 1.1866
5 0.2058 8.2371 1.1882
6 0.2469 7.5326 1.1900
7 0.2881 6.9853 1.1917
8 0.3292 6.5444 1.1934
9 0.3704 6.1794 1.1950
10 0.4115 5.8707 1.1965

(b) s
ðbÞ
u =s

ðaÞ
u = su l=b = 0:8

�� =su l=b = 0:1

��
i r/l su

(b)/su
(a)

0 0 28.1833
1 0.00514 28.1444
2 0.01029 28.0995
3 0.01543 28.0424
4 0.02058 27.9813
5 0.02572 27.9179
6 0.03086 27.8530
7 0.03601 27.7872
8 0.04115 27.7205
9 0.04630 27.6533
10 0.05144 27.5856

Table 3. Dimensionless ISSF KI;l1
defined in equation (11) for the sharp notch in a strip when g = 308 and b = 08.

b/l FEM
FI;l1

BFM
FI;l1

FEM error (%)

0.1 1.217 1.217 0.00
0.2 1.400 1.399 0.07
0.3 1.703 1.699 0.23
0.4 2.160 2.157 0.13
0.5 2.888 2.883 0.17
0.6 4.111 – –
0.7 5.798 – –
0.8 12.16 – –
0.9 35.19 – –

FEM: finite element method; BFM: body force method.
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The exact stress distributions for l=b=0:1 are given
by substituting the values FI =1:107 and FII =0:611
(see Table 4) into equations (12) and (13); then we have
su =1:207=r1�l1 and tru =0:820=r1�l2 . The FE mesh
as shown in Figure 5 cannot provide the exact stress

su =1:207=r1�l1 and tru =0:820=r1�l2 but
su =0:756=r1�l1 and tru =0:440=r1�l2 for l=b=0:1,
g =608, and b=308. Utilizing this fact, we can obtain
accurate results for other geometries. Since FEM error
of mixed mode–type ISSF is also controlled by the

Table 4. Dimensionless ISSFs KI;l1
;KII;l2

defined in equation (11) for the inclined sharp V-notch in a strip when g = 608.

g = 60� FI;l1
FII;l2

b

l/b 0� 15� 30� 45� 0� 15� 30� 45�

0.00 1.225 1.176 1.040 0.824 0.000 0.326 0.577 0.684

0.02 1.228 1.181 1.044 0.828 0.000 0.328 0.578 0.687

0.05 1.245 1.197 1.059 0.842 0.000 0.332 0.588 0.698

0.1 1.298 1.249 1.107 0.888 0.000 0.345 0.611 0.734

0.2 1.492 1.437 1.282 1.053 0.000 0.391 0.697 0.858

0.3 1.808 1.746 1.572 1.321 0.000 0.462 0.834 1.060

0.4 2.295 2.224 2.023 1.731 0.000 0.570 1.046 1.369

0.5 3.066 2.980 2.739 2.378 0.000 0.744 1.388 1.857

Table 5. Stress distributions along the notch bisector in Figure 4 under the same ISSF KI;l1
= K�I;l1

when g = 608 and b = 308: (a) when
l=b = 0:1 and (b) l0=b = 0:2.

(a) When l/b = 0.1 under
K�I;l1

= F�I;l1
s�
���
s� = 1

ffiffiffiffi
p
p

l1�l1
l=b = 0:1

��

i r=l su3r1�l1 tru3r1�l2

0 0 0 0
1 0.0412 0.71220 0.34720
2 0.0823 0.75394 0.40885
3 0.1235 0.75340 0.42368
4 0.1646 0.75440 0.43104
5 0.2058 0.75497 0.43498
6 0.2469 0.75563 0.43747
7 0.2881 0.75630 0.43917
8 0.3292 0.75696 0.44043
9 0.3704 0.75763 0.43141
10 0.4115 0.75830 0.43220

(b) When l/b = 0.2 under
KI;l1

= FI;l1
s0
�� ffiffiffiffipp l1�l1

s�s0j = KI;l1

i r=l su3r1�l1 tru3r1�l2

0 0 0 0
1 0.0206 0.71459 0.29340
2 0.0412 0.75625 0.34544
3 0.0617 0.75543 0.35790
4 0.0823 0.75614 0.36402
5 0.1029 0.75640 0.36726
6 0.1235 0.75673 0.36838
7 0.1440 0.75706 0.37057
8 0.1646 0.75738 0.37150
9 0.1852 0.75770 0.37220
10 0.2050 0.75800 0.37270
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mesh size around the corner, the error can be elimi-
nated by applying the same mesh pattern to the
unknown problem and the reference problem. The
detailed discussion has been indicated in Zhang et al.25

and Noda et al.26

From Table 6, it is seen that KI;l1

��
l=b=0:1

ffi
KI;l1

��
l=b=0:2

ffi 0:997 and KII;l2

��
l=b=0:1

ffi KII;l2

��
l=b=0:2

ffi 1:184. Using these results and exact solution for
l=b=0:1, the results for l=b=0:2 are given as shown
in Table 7. In Table 7, it is seen that the present method
has four-digit accuracy.

Results and discussion

Validity of 2D modeling for a maxillary second
premolar

An example of a maxillary second premolar is consid-
ered for the wedge-shaped defect as shown in Figure 1.
Then a 2D model is constructed with the fixed displace-
ment as shown in Figure 6(b) for the FE analysis. FEM
code MARC MENTAT (MSC Software Corporation,
2012) is employed with the four-node quad element.
Multi-frontal method is used in the solution of simula-
tion of equations. The total element number is about
223,000. The smallest element size at the end is 1/
38=0.153mm. Human tooth consists of pulp, enamel,
and dentin as shown in Figure 6, and the elastic con-
stants as shown in Table 838–40 are assumed neglecting
the elastic modulus of pulp. From Table 8, the singular
index can be calculated as shown in Table 9 using the
eigen equations shown in Appendix 1 as equations (14),
(15), (20), (26), and (27) for end A and corner B when
EI/EM=0, 300/1200, 500/1200, 1000/1200, 2000/1200,
and 2500/1200. Here, EI is the elastic modulus of the
composite resin and EM is the elastic modulus of the
dentin. The FE mesh in Figure 6(b) is the same as the
mesh in Figure 5 around the wedge-shaped defect.
First, a maxillary second premolar without the defect
as shown in Figure 6(a) is analyzed, and the results are
compared with the previous study using strain gauge
measurement.6 Here, the strains are measured at four
points, namely, (a) the coronal bucco-cervical region,
(b) the coronal linguo-cervical region, (c) the root
bucco-cervical region, and (d) the root linguo-cervical
region when the occlusal forces P2, P4, P6, P9, P11, and
P13 are applied. In previous studies,6,41 a human maxil-
lary second premolar was used.

Figure 7 shows the comparison between the results
of strain gauge and FEM to confirm the validity of 2D
model shown in Figure 6. In the experiment,6 the same
maxillary second premolar teeth without the wedge-
shaped defect were used and the effects were considered

Table 6. Stress ratio distribution along the notch bisector in
Figure 4 when g = 608 and b = 308.

i su l=b = 0:1

��
su l=b = 0:2

��
tru l=b = 0:1

��
tru l=b = 0:2

��

0 – –
1 0.99666 1.18338
2 0.99695 1.18358
3 0.99731 1.18381
4 0.99770 1.18409
5 0.99811 1.18440

Figure 4. Inclined notch g = 608 and b = 308 in a strip when
(a) l=b = 0:1 and (b) l=b = 0:2.

Figure 5. Finite element mesh when g = 608 and b = 308:
(a) mesh of the sharp notch in a strip and (b) mesh around the
sharp notch corner.

Figure 6. Two-dimensional model of human tooth: (a) without
wedge-shaped defect with the occlusal force locations and
directions Pi (i = 1–14) and (b) with wedge-shaped defect with
FEM mesh and fixed displacement boundary conditions.
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for loads P2, P4, P6, P9, P11, and P13 in Figure 6. Then
the stresses at C and D in Figure 6(a) were compared.
As shown in Figure 7, most of the results are in good
agreement. However, 4 results of 24 are very different.
This is perhaps because of the shape difference between
the maxillary second premolar used in those studies. In
Figure 7, the experimental and FEM results are com-
pared for the maxillary second premolar without
wedge-shaped defect. Since the wedge-shaped defect
geometry is 2D as shown in Figure 1, the validity of 2D
modeling is confirmed in the above discussion.

Effect of occlusal force on the ISSF of the wedge-
shaped defect before restoration with composite
resin

First of all, the ISSF of the wedge-shaped defect is con-
sidered before restoration with composite resin. The
ISSF is indicated in Appendix 1 as equations (10)–(16).
Table 10 indicates the stresses su; tru along the bisector
of the wedge-shaped defect. It is seen that the values of
su3r1�l1 and tru3r1�l2 are nearly constant, and there-
fore, ISSFs can be obtained. It should be noted that
the results in Table 10 include some numerical error.
However, the error can be eliminated using the exact
solution used as the reference problem by applying the
same mesh pattern as shown in Tables 2 and 3 with
Figure 5. Therefore, the ISSF can be obtained very
accurately.

Figure 9 indicates the ISSFs FuB u=08j and FruB u=08j .
Here, the singular stresses along the bisector can be
expressed as su u=08j =FuB u=08j =r1�l1 and
tru u=08j =FruB u=08j =r1�l2 (see Appendix 1)

su u=08j =
KI;l1

r1�l1
fu u=08j =

FuB u=08j
r1�l1

;

FuB u=08j = ISSF

tru u=08j =
KII;l2

r1�l2
fu u=08j =

FruB u=08j
r1�l2

;

FruB u=08j = ISSF

ð6Þ

Table 7. Dimensionless ISSFs KI;l1
;KII;l2

defined in equation (11) for the sharp notch in a strip when g = 608 and b = 308 in Figure 4.

l=b FEM BFM FEM error (%)

FI;l1
0.1 1.107 1.107 0
0.2 1.282 1.284 0.187

FII;l2
0.1 0.611 0.611 0
0.2 0.697 0.695 20.258

FEM: finite element method; BFM: body force method.

Table 8. Mechanical properties for human teeth.38–40

Material Elastic modulus (MPa) Poisson’s ratio Tensile strength
(MPa) (strain (31026))

Compression strength
(MPa) (strain (310–6))

Pulp 9.81 0.49 – –
Dentin 11,800 0.30 – 213–380 (1810–32,300)
Enamel 46,100 0.30 10.4–45.6 (226–989) 176–608 (3820–13,200)

Table 9. Singular index for the ISSFs defined in equations (10), (17), and (22).

Corners in Figure 1(b) Singular index EI=EM

0 300/1200 500/1200 1000/1200 2000/1200 2500/1200

A l 0.7112 0.8878 0.9445 0.9971 0.9788 0.9590
B l1 0.5122 0.8240 0.9005 0.9834 0.9114 0.8767

l2 0.7309 0.8593 0.9087 0.9816 1.0000 1.0000

EI is the Young’s modulus of composite resin; EM is the Young’s modulus of dentin.

Figure 7. Strain at points C and D caused by the occlusal
forces P6 and P11 to conform the validity of 2D modeling.

Chen et al. 7



In Figure 8(a), the ratio of the maximum tensile
stress and the compressive stress is about 1:1. It is
known that the strength ratio of enamel under tension
to under compression is 1:10. Therefore, the tensile
stress may be more harmful than the compressive stress
for enamel.

The compressive strength about dentin is 213–
380MPa. Although there is little study on the tensile
strength of dentin, it has been told that it is about 1/7

of the compressive strength. Therefore, the tensile stress
may also be more harmful than the compressive stress
for dentin.

From Figure 8, it is found that load P11 may be most
harmless because of the subtraction of the compressive
due to load P11 and the tensile stress due to the bending
moment. On the other hand, the occlusal forces P3, P8,
P10, and P12 acting on the vertical directions to the
tooth axis seem most harmful perhaps because the
stress due to the bending moments becomes larger in
those occlusal forces. If the occlusion can be adjusted
as in the direction of P11, the risk of extension or frac-
ture from the wedge-shaped defect may be reduced.

Effect of occlusal force on the ISSF at the interface
end A of the wedge-shaped defect after restoration
with composite resin

Next, we consider the maxillary second premolar with
wedge-shaped defect after restoration by composite
resin. Then a 2D FE model in Figure 2(d) is constructed
using similar mesh as shown in Figure 6(b). Human
tooth model consists of enamel, dentin, and composite
resin as shown in Figure 6, and the elastic constants as
shown in Table 8 are assumed; however, the elastic
modulus of the pulp is neglected.

At the interface end A, a singular stress field appears
as shown in equations (17) and (18)42,43 in Appendix 1.
The debonding may be controlled by the interface stress
suA u=908j along u=90� in Figure 9. The intensity of
the singular stress suA u=908j is expressed by the ISSF
FuA u=908j as shown in the following equation

suA u=908j =
K

r1�l
fu u=908j

=
FuA u=908j

r1�l
;FuA u=908j = ISSF ð7Þ

Figure 10 shows the ISSFs FuA u=908j versus Pi rela-
tions when EI/EM=300/1200. Assume the stress com-
ponent su is most harmful for the debonding at end A.
From Figure 10, P13 is most harmless when EI/
EM=300/1200. Similar results are obtained when EI/
EM=500/1200 and 1000/1200. Figure 11 shows the
ISSF FuA u=908j at end A versus Pi relations when EI/
EM=2000/1200. From Figure 11, P2 is most harmless
when EI/EM=2000/1200. Similar results are obtained
when EI/EM=2500/1200. The most harmless load is
depending on the ratio EI/EM. On the other hand, the
harmful occlusal forces are P1, P3, P8, and P10 and the
most harmful load is always P3.

Effect of occlusal force on the ISSF at corner B of the
wedge-shaped defect after restoration with
composite resin

For corner B, the singular stress should be considered
depending on EI/EM. They are expressed in equations
(22)–(32)44 in Appendix 1. When EI/EM \ 1, the stress

Table 10. Stress along the notch bisector in Figure 6(b).

i su3r1�l1 tru3r1�l2

(a) su, tru due to P4 (r = i/243) (mm)

0 0 0
1 20.50344 20.27129
2 20.53177 20.31947
3 20.53016 20.33255
4 20.52965 20.33707
5 20.52884 20.34033
6 20.52810 20.34249
7 20.52737 20.34406
8 20.52664 20.34530
9 20.52900 20.34634
10 20.52516 20.34727
11 20.52443 20.34814
12 20.52373 20.34898
13 20.52323 20.34974
14 20.52264 20.35074
15 20.52158 20.35236

(b) su, tru due to P6 (r = i/243) (mm)

0 0 0
1 20.70479 20.52269
2 20.74451 20.61527
3 20.74215 20.63746
4 20.74124 20.64840
5 20.73984 20.65422
6 20.73850 20.65786
7 20.73712 20.66032
8 20.73572 20.66213
9 20.73429 20.66353
10 20.73284 20.66468
11 20.73139 20.66567
12 20.72995 20.66660
13 20.72879 20.66737
14 20.72752 20.66860
15 20.72557 20.67187
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along the bisector u=0� in Figure 12 is most harmful,
and it can be expressed in equation (22) in Appendix 1.

When EI \EM, the stress along the bisector
suB u=08j should be considered (see Appendix 1)

suB u=08j =
KI;l1

r1�l1
fIuðuÞ u=08j

=
FuB u=08j
r1�l1

;FuB u=08j = ISSF

ð8Þ

Figure 13 shows the ISSF FuB u=08j and versus Pi

(i=1–14) relations when EI/EM=300/1200. In Figure
13, it is known that the tensile and compressive
strength of enamel are in the ratio of 1:10 (see Table 8).
Therefore, the tensile stress may be more harmful than
the compressive stress for enamel. The compressive
strength about dentin is 213–380MPa. Since the tensile
strength of the dentin is about 1/7 of the compressive

strength, the tensile stress may also be more harmful
than compressive stress for the dentin. From Figure 13,
it is found that load P9 may be most harmless because
the compressive due to loads P9 and P11 and the tensile
stress due to the bending moment may cancel each
other. On the other hand, the occlusal forces P1, P3, P8,
and P10 acting in perpendicular to the tooth axis are
most harmful perhaps because the stress due to the
bending moments becomes larger in those occlusal
forces. Similar results were obtained when
EI/EM=500/1200 and 1000/1200. If the occlusion can
be adjusted as in the direction of P11, the risk of frac-
ture from the wedge-shaped defect may be reduced.

On the other hand, when EI/EM . 1 the debonding
should be considered along the interface, that is, u

6 150� in Figures 12 and 13. When EI/EM=2000/1200
and 2500/1200, the singular index l2=1.0, and there-
fore, no mode II singular stress. Then the singular
stress field is expressed in equation (9) by KI;l1

alone.
When EI .EM, the interface stress suB u=61508j

should be considered (see Appendix 1)

suB u=61508j =
KI;l1

r1�l1
fIuðuÞ u=1508j

=
FI

uB u=1508j
r1�l1

;FI
uB u=1508j

=KI;l1
fIuðuÞ u=1508j = ISSF

ð9Þ

Assume the ISSF FI
uB u=1508j is the most harmful for

the fracture at the corner of wedge-shaped inclusion.
Figure 14 shows the ISSF FI

uB u=1508j at corner B versus
Pi relations when EI/EM=2000/1200. As shown in
Figure 14, it is found that the occlusal force P11 may be

Figure 8. ISSFs at corner B defined in equation (16) due to the occlusal forces Pi (a), (c) P1–P7 are applied to the buccal side of the
teeth (b), and (d) P8–P14 are applied to the lingual side of the teeth.
ISSF: intensity of singular stress field.

Figure 9. Singular stress field for the interface end A.
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Figure 10. ISSFs at end A defined in equation (21) due to occlusal forces Pi when EI/EM = 300/1200: (a) P1–P7 are applied to the
buccal side of the teeth and (b) P8–P14 are applied to the lingual side of the teeth.
ISSF: intensity of singular stress field.

Figure 11. ISSFs at the interface end A defined in equation (21) due to occlusal forces Pi when EI/EM = 2000/1200: (a) P1–P7 are
applied to the buccal side of the teeth and (b) P8–P14 are applied to the lingual side of the teeth.
ISSF: intensity of singular stress field.
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most harmless. On the other hand, the occlusal forces
P1, P3, P8, and P10 are harmful because they cause ten-
sile stresses at the interface. Similar results are obtained
when EI/EM=2500/1200. If the occlusion can be
adjusted as in the direction of P11, the risk of fracture
may be reduced.

Conclusion

Wedge-shaped defects are frequently observed on the
cervical region of the human tooth. Previously, most
studies explained that improper tooth-brushing causes
such defects. However, recent clinical observation

suggested that the repeated stress due to occlusal force
may induce the formation of these wedge-shaped
defects. In this study, 2D human tooth models were
considered with and without a wedge-shaped defect by
applying the FEM. Then the relationship between the
stress intensity and occlusion was discussed before and
after restoration with composite resins. The conclusions
can be summarized in the following way:

1. As shown in Figure 6, the intensity of the singular
stress was investigated with varying the position
and direction of the occlusal force. It is found
that the occlusal force P11 may be most harmless,
but the occlusal forces P3, P8, P10, and P12 acting
in perpendicular directions to the tooth axis seem
most harmful. If the occlusion can be adjusted as
in the direction of P11, the risk of extension or
fracture from the wedge-shaped defect may be
reduced.

2. It was found that the maximum tensile and com-
pressive strain are in the ratio of about 1:3 (see
Table 8). Since the tensile and compressive strength
of enamel are in the ratio of 1:10, the tensile stress
may be more harmful than compressive stress for
enamel. Also, since the tensile and compressive
strengths of dentin are in the ratio of about 1:7, the
tensile stress may also be more harmful than com-
pressive stress for dentin.

Figure 12. Singular stress field for corner B.

Figure 13. ISSFs at corner B defined in equation (29) due to occlusal forces Pi when EI/EM = 300/1200: (a) P1–P7 are applied to the
buccal side of the teeth and (b) P8–P14 are applied to the lingual side of the teeth.
ISSF: intensity of singular stress field.
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3. The intensity of the singular stress at end A was
investigated with varying the position and direction
of the occlusal force. As shown in Figures 10 and
11, it is found that P3 is the most harmful occlusal
force for any composite resin and dentin ratio EI/
EM. However, occlusal forces P2, P11, and P13 are
the most harmless occlusal force for corner B under
different EI/EM ratios, respectively.

4. The intensity of the singular stress at corner B was
investigated with varying the position and direction
of the occlusal force. As shown in Figures 13 and
14, it is found that P3 is the most harmful occlusal
force for any composite resin and dentin ratio EI/
EM. However, occlusal forces P9 and P11 are the
most harmless occlusal force for corner B under
different EI/EM ratios, respectively.
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Appendix 1

ISSFs considered in this article

In this article, several types of singular stress fields are
considered at the corner and interface end, and their
ISSFs are discussed. They are indicated in the following
way.

The ISSF of the wedge-shaped defect before restoration with
composite resin. The stress field around the apex of the
wedge-shaped defect can be expressed in the following
equations

sij =
KI;l1

r1�l1
fIijðuÞ+

KI;l2

r1�l2
fIIij ðuÞ; KI;l1

;KII;l2
= ISSFs

ð10Þ

KI;l1
=FI;l1

s
ffiffiffiffi
p
p

l1�l1 ;KII;l2
=FII;l2

s
ffiffiffiffi
p
p

l1�l2 ;

FI;l1
;FII;l2

=Dimensionless ISSFs
ð11Þ

For example, su and tru are expressed as

su =
lffiffiffiffiffiffi
2p
p ½ðl1 +1Þ sinfl1ða� pÞg cosðl1 � 1Þu

+ ½l1 sinfa� l1ða� pÞg

+ sinðl1pÞ� cosðl1 +1Þu� KI;l1

r1�l1

+
l2ffiffiffiffiffiffi
2p
p ½ðl2 +1Þ sinfl2ða� pÞg sinðl2 � 1Þu

+ ½l2 sinfa� l2ða� pÞg

+ sinðl2pÞ� sinðl2 +1Þu�KII;l2

r1�l2

ð12Þ

tru =
l1ffiffiffiffiffiffi
2p
p ½ðl1 +1Þ sinfl1ða� pÞg sinðl1 � 1Þu

+ ½l1 sinfa� l1ða� pÞg

+ sinðl1pÞ� sinðl1 +1Þu�KI;l1

r1�l1

� l2ffiffiffiffiffiffi
2p
p ½ðl2 � 1Þ sinfl2ða� pÞg cosðl2 � 1Þu

+ ½l2 sinfa� l2ða� pÞg

� sinðl2pÞ� cosðl2 +1Þu�KII;l2

r1�l2

ð13Þ

The singular index can be determined from the fol-
lowing characteristic equations:

For mode I

sin l1ð2p � gÞf g= � l1 sin g ð14Þ

For mode II

sin l2ð2p � gÞf g= l2 sin g ð15Þ

su =
KI;l1

r1�l1
fu u=08j =

FuB u=08j
r1�l1

;FuB u=08j = ISSF

tru =
KII;l2

r1�l2
fu u=08j =

FruB u=08j
r1�l2

;FruB u=08j = ISSF

ð16Þ

The ISSF at the interface end A of the wedge-shaped defect
after restoration with composite resin. The singular stress
field at the interface end A can be expressed in the fol-
lowing equations42,43

suA =
K

r1�l
fuðuÞ; tru =

K

r1�l
fruðuÞ;K= ISSF ð17Þ

fuðuÞ=m1 cos ðl� 1Þuf g �m2 sin ðl� 1Þuf g
�m1 cos ðl+1Þuf g+m3 sin ðl+1Þuf g

fruðuÞ=m3 cos ðl� 1Þuf g+m4 sinðl� 1Þu
�m3 cos ðl+1Þuf g �m1 sin ðl+1Þuf g
m1 = lðl+1ÞY2;m2 = lðl+1ÞY1;

m3 = lðl� 1ÞY1;m4 = lðl� 1ÞY2

ð18Þ

Y1 =4lb cosðlpÞ+2b cosðlpÞ � 1½ �+4lðl+1Þða� bÞ
Y2 =2ð2lb� 1Þ sinðlpÞ;Y3 = � Y1;

Y4 = � 2ð2lb+1Þ sinðlpÞ
L1 =2l cosðlp=2ÞY4 � 2ðl� 1Þ sinðlp=2ÞY3

L2 = � 2l cosðlp=2ÞY2 +2ðl� 1Þ sinðlp=2ÞY1

ð19Þ

The singular index can be determined from the fol-
lowing characteristic equation (Figure 15)

sin2
p

2
l

� �
� l2

h i2
b2 +2l2 sin2

p

2
l

� �
� l2

h i

ab+ l2ðl2 � 1Þa2 +
sin2ðplÞ

4

ð20Þ

Figure 15. Sharp notch..
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The debonding may be controlled by the interface
stress suA u=908j along u=90� in Figure 16. The inten-
sity of the interface singular stress field is expressed by
the ISSF FuA u=08j as shown in the following equation

suA u=908j =
K

r1�l
fu u=908j =

FuA u=908

��
r1�l

;

FuA u=908j =Kfu u=908j = ISSF

ð21Þ

The ISSF at corner B of the wedge-shaped defect after restora-
tion with composite resin. The singular stress field at cor-
ner B can be expressed in the following equations
(Figure 17)

sij =
KI;l1

r1�l1
fIijðuÞ+

KI;l2

r1�l2
fIIij ðuÞ;KI;l1

;KI;l2
= ISSFs

ð22Þ
KI;l1

=FI;l1
s
ffiffiffiffi
p
p

l1�l1 ;KII;l2
=FII;l2

s
ffiffiffiffi
p
p

l1�l2 ;

FI;l1
;FII;l2

=Dimensionless ISSF
ð23Þ

su =
l1ffiffiffiffiffiffi

2p
p

ða� bÞ
l1½½ ða� bÞ sin g � l1ðg � pÞf g

+ ð1� bÞ sinðl1pÞ�3 cos ðl1 +1Þuf g+ ð½ l1 +1Þ

3ða� bÞ sin l1ðg � pÞf g�3 cos ðl1 � 1Þuf gKI;l1

r1�l1

+
l2ffiffiffiffiffiffi

2p
p

ða� bÞ
l2½½ ða� bÞ sin g � l2ðg � pÞf g

�ð1� bÞ sinðl2pÞ�3 sin ðl2 +1Þuf g+ ð½ l2 +1Þ

3ða� bÞ sin l2ðg � pÞf g�3 sin ðl2 � 1Þuf gKII;l2

r1�l2

ð24Þ

tru =
l1ffiffiffiffiffiffi

2p
p

ða� bÞ
l1½½ ða� bÞ sin g � l1ðg � pÞf g

+ ð1� bÞ sinðl1pÞ�3 sin ðl1 +1Þuf g+ ð½ l1 � 1Þ

3ða� bÞ sin l1ðg � pÞf g�3 sin ðl1 � 1Þuf g KI;l1

r1�l1

+
�l2ffiffiffiffiffiffi

2p
p

ða� bÞ
l2½½ ða� bÞ sin g � l2ðg � pÞf g

�ð1� bÞ sinðl2pÞ�3 cos ðl2 +1Þuf g+ ð½ l2 � 1Þ

3ða� bÞ sin l2ðg � pÞf g�3 cos ðl2 � 1Þuf gKII;l2

r1�l2

ð25Þ

The singular index can be determined from the follow-
ing characteristic equations:

For mode I

ða� bÞ2l2
1
ð1� cos 2gÞ+2l1ða� bÞ sin g

3 sin l1g + sin l1ð2p � gÞf g
+2l1ða� bÞb sin g

3 sin l1ð2p � gÞ � sin l1gf g
+ ð1� a2Þ � ð1� b2Þ cos 2l1p

+ ða2 � b2Þ cos 2l1ðg � pÞf g=0

ð26Þ

For mode II

ða� bÞ2l2
2
ð1� cos 2 gÞ � 2ln2ða� bÞ sin g

3 sin l2g + sin l2ð2p � gÞf g � 2l2ða� bÞb sin g

3 sin l2ð2p � gÞ � sin l2gf g
+ ð1� a2Þ � ð1� b2Þ cos 2l2p

+ ða2 � b2Þ cos 2l2ðg � pÞf g=0

ð27Þ

a=
GMðkI +1Þ � GIðkM +1Þ
GMðkI +1Þ+GIðkM +1Þ ; kI =3� 4nI

b=
GMðkI � 1Þ � GIðkM � 1Þ
GMðkI +1Þ+GIðkM +1Þ ; kM =3� 4nM

ð28Þ

When EI .EM, the stresses along the bisector
su u=08j and tru u=08j should be considered since the
fracture may occur along the bisector

suB u=08j =
KI;l1

r1�l1
fIuðuÞ u=08j =

FuB u=08j
r1�l1

;FuB u=08j

=KI;l1
fIuðuÞ u=08j = ISSF

truB u=08j =
KII;l2

r1�l2
fIIu ðuÞ u=08j

=
FruB u=08j
r1�l2

;FruB u=08j =KII;l2
fIIu ðuÞ u=08j ISSF

ð29Þ

Figure 16. Interface end A.

Figure 17. V-shaped inclusion corner B.
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When EI .EM, the interface stresses su u=61508j and
tu u=61508j should be considered since the fracture may
occur along the interface

suB u=1508j =
FI

uB u=1508j
r1�l1

+
FII

uB u=1508j
r1�l2

FI
uB u=1508j =KI;l1

fIuðuÞ u=1508j = ISSF

FII
uB u=1508j =KII;l2

fIIu ðuÞ u=1508j = ISSF

ð30Þ

truB u=1508j =
FI
ruB u=1508j
r1�l1

+
FII
ruB u=1508j
r1�l2

FI
ruB u=1508j =KI;l1

fIruðuÞ u=1508j = ISSF

FII
ruB u=1508j =KII;l2

fIIruðuÞ u=1508j = ISSF

ð31Þ

suB u=�1508j =
FI

uB u=1508j
r1�l1

� FII
uB u=1508j
r1�l2

truB u=�1508j = � FI
ruB u=1508j
r1�l1

+
FII
ruB u=1508j
r1�l2

ð32Þ
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