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'Intensity of Singular Stress Fields
at the End of a Cylindrical
Inclusion

In short fiber reinforced composite it is known that the singular stress at the end of fibers
causes crack initiation, propagation, and final failure. The singular stress field is con-
trolled by the generalized stress intensity factors defined at the end of the inclusion. In this
stucly the stress intensity factors are discussed for an elastic cylindrical inclusion in an
infinite body under (A) asymmetric uniaxial tension in the x direction, and (B) symmetric
uniaxial tension in the z direction. These problems are formulated as a system of integral
equations with Cauchy-type or logarithmic-type singularities, where densities of body
Sorce distributed in infinite bodies having the same elastic constants as those of the matrix
and inclusion are unknown. In the numerical analysis, the unknown body force densities
are expressed as fundamental density functions and weight functions. Here, fundamental
density functions are chosen to express the symmetric and skew-symmetric stress singu-
larities. Then, the singular stress fields at the end of a cylindrical inclusion are discussed
with varying the fiber length and elastic ratio. The results are compared with the ones of
a rectangular inclusion under longitudinal and transverse tension.

[DOL: 10.1115/1.1598479]

1 Introduction

In short fiber reinforced composite it is known that the singular
stress at the end of fibers causes crack initiation, propagation, and
final failure. Recently, Chen and Nisitani [1,2] indicated that the
singular stress field is controlled by the generalized stress inten-
sity factors (SIF’s) defined for inclusion corners, and Chen [3,4]
discussed the singular sstress of a rectangular inclusion as a two-
dimensional (2D) model. Since actual fibers always have 3D
shapes and dimensions, 3D analysis is necessary to evaluate the
strength of composites. From this viewpoint, a cylindrical inclu-
sion is important as a 3D mode! of a fiber in matrix. In previous
studies, Kasano et al. [7] treated a rigid cylindrical inclusion, and
Hasegawa and Yoshiya [8] solved an elastic cylindrical inclusion
with rounded ends. Takao et al. [9], Hasegawa et al. [10], and Wu
and Du [11,12] discussed stress fields induced by uniform eigen-
strain given within a cylindrical domain. Usually to obtain gener-
alized SIF’s for 3D problems is more difficult than to obtain nor-
mal SIF’s defined for ordinal cracks. Therefore, when Chen and
Nisitani [3-5] applied the body force method [6] to 2D problems,
they examined two types of numerical procedures, one of which is
obtained from the values of unknown body force densities, and
the other of which is from the values of stress around the inclusion
corner. In both procedures the final results were extrapolated from
the results of finite numbers of collocation points [4-6].

In this study the stress intensity factors are discussed for an.

elastic cylindrical inclusion in an infinite body under (A) asym-
metric uniaxial tension in the x direction, and (B) symmetric
uniaxial tension in the z direction. The asymmetric problem (A) is
solved on the superposition of two auxiliary loads; (i) biaxial ten-
sion and (ii) plane state of pure shear. Those problems are formu-
lated as a system of integral equations with Cauchy-type or
logarithmic-type singularities, where densities of body force dis-
tributed in infinite bodies having the same elastic constants as
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those of the matrix and inclusion are unknown. In the numerical
analysis, the unknown functions of the body force densities are
expressed as fundamental density functions and weight functions.
Here, the weight functions are approximated as power series in-
stead of step or linear functions used usually in the body force
method [3—-6]. Then, the singular stress fields at the end of a
cylindrical inclusion are discussed for the wide range of the fiber
length and elastic ratio.

2 Theory and Solution

Consider a cylindrical bar in an infinite body under asymmetric
uniaxial tension in the x direction shown in Fig. 1a. This problem
is composed of the superposition of two auxiliary loads; biaxial
tension in the xy plane, shown in Fig. 1c, and pure shear in the xy
plane, shown in Fig. 1d. The method of analysis will be explained
for the problem of pure shear in the xy plane. Here, L and D are
dimensions of the inclusion, and o™ is a stress at infinity. The
notations (G ,vy) denote the shear modulus and Poisson’s ratio
of the matrix, and (G,,v,) denotes the ones of the inclusion.
Rectangular coordinate (x,y,z) and cylindrical coordinate (r, 6,z)
are defined in Fig. 1. Here, (£7.0), (p,$,0) are rectangular and
cylindrical coordinates where body forces are applied. The body
force method [6] is used to formulate the problem as a system of
singular integral equations. Here, the fundamental solutions are
stress and displacement fields when two ring forces acting sym-
metrically to the plane z=0. In this case the boundary conditions
only on z=0 can be considered due to symmetry. The two ring
forces have three types [13,14], that is, (1) ring forces in the r
direction with the magnitude of cos 2¢, (2) ring forces in the 4
direction with the magnitude of.sin2¢, (3) ring forces in the z
direction with the magnitude of cos 2¢. In the following discus-
sion, how to satisfy the boundary conditions around corner A will
be explained. '

The problem can be expressed by the following equations in
terms of the unknown body force densities (F, ,Fpr ,Fgp) and
(F 1 Fyy Fg) distributed at infinitesimal area pd dr, in infinite
bodies M and . Here, bodies M and I have the same elastic con-
stants as those of the matrix and inclusion, respectively, and r, is
a distance from the corner A as shown in Fig. 1e. In the following
equation, the notation [, means integrating body forces on both
the side and ends of the cylinder. Here, for example, the notation
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Fig. 1 Problem and coordinate system: (a) Uniaxial tension
perpendicular to the axis of the inclusion (x direction); (b)
Uniaxial tension in the axis of the Inclusion (z direction); (c)
Hydrostatic tension in a plane perpendicular to the axis of the
inclusion (xy plane); (d) Pure shear in a plane perpendicular to
the axis of the inclusion (xy plane); (e) Coordinate system

h,’:,',“"(r,‘ ,5) denotes the normal stress induced at the collocation

point s induced by the body force F,, acting at the point r, .
Since- the integral includes the Cauchy-type or logarithmic-type
singularities, the integration should be interpreted in the Cauch
principal value sense, :
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Fig. 2 Two types of body force distributed around the corner
in the (a) normal, (b) tangential, and (¢) circumferential direc-
tions
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Equations (la) and (1b) enforce the boundary conditions o,
—0,;=0, and u gy — 114,=0, respectively; other boundary condi-
tions, that is, T,,,M_T,”,=0, T,,gM_’T"o,'——o, u,M—u,.,=O. Uy
—u,;=0, can be expressed in a similar way. In Egs. (1a) and (1b)
oy and iy, are stress and displacement components induced by
the stress at infinity o™; here we assume body / is also under the
stresses (07,07, Trg), Which induce o)y, and uf, in Egs. (la)
and (1b).

The singular stress fields near corner A can be expressed by two
types of body force distributions; symmetric and skew-symmetric
types to the bisector of the corners. Figure 2 indicates the two
types of body forces distributed in the normal, tangential, and
circumferential directions to the boundary. In the vicinity of cor-
ner A, plain strain condition can be assumed; then, the eigenvalues
Ny, N2, N3, Ay controlling the singular stress fields is determined
from the ‘eigenequations for 2D problems [1,2,15]. In this study
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Fig. 3 (a) Typical boundary division for Egs. (3) and (4). (b)
Boundary division for singular integrals.

therefore unknown body force densities F, 4 (ry)~Fg4(r4) in
body M and F, (r,)~Fg,(r,) in body I are approximated by
using fundamental densities r *~! and weight functions
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Here, fundamental density functions are chosen to express the
symmetric stress singularity of the forms 1/r!~*1, 1/#' =% and the

skew-symmetric stress singularity of the forms 1/r! =22, 1/r! ™,
Equations (2) and (3) do not include the terms expressing local
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Table 1 Convergence of Fiag Fringy F'"-M (L/D=10, G,/Gy
=102, »;=v,=0.3)

Froa Frr o, Frira,
M| from from from from from
T W (0) | W (0) Average| W (0) | Wi (0) Average o (0)
210.290 [ 0.417 | 0.354 [-0.723[-0.763(-0.743| 0.070
3)0.321}0.396 4 0.359 {-0.792[-0.795|~0.794| 0.027
4]10.333/0.388 | 0.361 |{-0.790]-0.789|-0.789| 0.019
5/10.338 | 0.383| 0.360 {-0.788{-0.788{-0.788] 0.014
610.340 ] 0.379 | 0.360 |-0.789/-0.788!-0.789] 0.011

uniform streching and shear distortion at corner A. Therefore the
stresses (077,07, T,g;) applied in body 1. In the numerical calcu-
lation, we may set the values of (07,075, T.s) in body I so as to
produce the same strains appearing in body M under the stress o>,
The eigenvalues N, A, are given as the roots of the eigenequa-
tions for in-plane deformation [15,2], and the eigenvalues A3, \,
are given as the roots of the eigenequations for antiplane defor-
mation [1]. For example, the eigenequations for antiplane defor-
mation are shown in Eqgs. (4) and (5).
For a symmetric state of stress singularity,

I'+1

sin\(y—) _
T -1 S

sin\7r

For a skew-symmetric state of stress singularity,

sin\(y—) r+1
T T ©)

sinAm

where the corner angle for matrix y=37/2 and the elastic ratio
=Gy /G,;. When G,,>G, there is a real root A3 of Egs. (4),
but no roots A4 of Egs. (5). On the contrary, when G4, <G, there
is a real root A, of Eqs. (4), but no roots A5 of Egs. (5).

Figure 3a illustrates an example of boundary divisions for
L/D=10%. In the numerical solutions for elliptical inclusions, we
do not have to divide the boundaries because the “fundamental
densities” to express an elliptical inclusion exactly are available
[L6]. On the other hand, the boundary division is introduced here
because in this problem the fundamental densities are only useful
near the corner. Then, the fundamental densities with singularities
of symmetric and skew-symmetric types are employed on bound-
aries C-B-A-D-E in Fig. 3. It is confirmed that the results are not
affected until almost to the third digit by changing a region over
which the fundamental densities are used. Except along the
boundaries C-B-A-D-E in Fig. 3, body forces are simply distrib-
uted in the normal, circumferential, and tangential directions with-
out using symmetric and skew-symmetric distributions. On the
numerical solution as shown in Eqgs. (2) and (3), the singular in-
tegral Eqgs. (1a) and (1b) are reduced to algebraic equations for the
determination of the unknown coefficients, for example, a, y
~far in Eq. (3). These coefficients are determined from the
boundary conditions at suitably chosen collocation points. The

Table 2 Convergence of F,, o F,,M, Fuix . (LID=10, G,/Gy
=10"%, y;=v,=0.3)

Fr s, Frr, Frrra,
M| from from from from from
| w0 | W (0) Average| o (0) | Wy (0) Average| War " (0)
210.191 | 0,221 | 0.206 | 1.260 | 0.989 | 1.125 | 0.044
310.212 | 0.227 | 0.220 | 1.123 | 1.024 | 1.074 | 0.021
410.214} 0.223 ] 0.219 | 1.058 | 1,051 | 1.055 | 0.014
5(10.215 | 0.222 | 0.219 | 1.060 | 1.048 { 1.054 | 0.010
610.216 | 0.221 | 0.219 | 1.056 | 1.047 ‘1.052

0.008
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Fig. 4 F,, and Fy,, for a cylindrical inclusion (solid line) and a rectangular inclusion
(broken line) under longitudinal tension (vy=r,=0.3)

stress intensity factors K’-M’ Ky K_,,,')‘J, K, for corner A
can be obtained from the values of weight functions at the corner
tip W/(0), Wj(0), Wi(0), wi'(0), w;"™(0), Wy ™(0). The
expressions may be found in Nisitani et al. ([5]), and Noda et al.

([17D.

3 Numerical Results and Discussion

The generalized stress intensity factors K LAy K Ay K,,,‘M,
Ky, defined in Refs. [1], [2] are analyzed with varying the

aspect ratio L/D and elastic ratio G;/G, . In the following dis-
cussion, dimensionless stress intensity factors F i~ Fury, are

shown assuming Poisson’s ratio v;= vy, =0.3,
Fin =K, lo*\m(DR)' ™™,

Frip,=Kun,/o"Nm(D12)! ™, ©
Fuitn,=Kuin,/0°Nm(DR)' ™,

FIII,A4=KIII.)\,,/O'W\[;T(DQ)I-Mv

Convergence of the results are shown for the problem of pure
shear in the xy plane in Fig. 1d. Table 1 shows the values of F Iy
Fypp, atthe corner A(#=0) and the values of F 11,0, at the corner
A(9=m/4) for LID=10, G,;/Gy=10. Also Table 2 shows the
values of F 1ty Fua, at the corner A(6=0) and the values of
Fipi, 2t the corner A(6=/4) for L/D=10, G;/Gy=107>. In
Tables 1 and 2, M is the number of collocation points at each

boundary division, and the total number of collocation points is
7M. As shown in Tables 1 and 2, The F,')\| values can be deter-

mined from the values W,,(0), Wi,(0), and the Fy, values

can be determined from the values of W’',(0), W'i,(0). From the
examination as shown in Tables 1 and 2, we can see the following.

(1) When G,/G ;> 1, the difference of the Fix,» Frp, values
obtained from different components of unknown functions
W,’,M(O), WfM(O) is larger, about 10%. When G,/Gy,<1, the
difference is smaller, about a few percent. Similar tendency was
seen in the analysis of a 2D rectangular inclusion [4].

(2) The average values of F 1A Frp,» which is obtained from
different components, always have good convergence for M =35, 6
and look reliable.

(3) The values of Fyy,, Fy, are only a few percent com-

pared with the values of F}_)\l. Fi,.

Journal of Applied Mechanics

(4) The final results are obtained without using extrapolation
because the weight functions are approximated as power series
instead of step or linear functions [3-5] used usually in the body
force method. The convergence of the present solution is better
than the cases of Nisitani [5] and Chen [3,4].

The following values of F I F i, are obtained confirming
the convergence of the average values for various aspect ratio
L/D and elastic ratio G,/Gy, . )

In Table 3, the results for a cylindrical bar under uniaxial ten-
sion in the z direction are shown. For comparison, Table 4 shows
the results for a rectangular inclusion under longitudinal tension
obtained in the similar way of the present analysis. Chen’s results
[3] are in good agreement with Table 4. Results of Tables 3 and 4
are plotted in Fig. 4 as a comparison between the 3D and 2D
models. With increasing the value L/D, the stress intensity factors
increase and finally become saturated. For the same elastic ratio
G;/Gy, 3D and 2D results have a similar tendency with the
difference under =30% in most cases.

Table 5 shows the values of F I F I, at the corner A(6
=0), and Table 6 shows the ones at the corner A(8=n/2) for
uniaxial tension of a cylindrical inclusion in the x direction. Fig-
ures 5 and 6 are the plots of Tables 5 and 6. As shown in these
tables and figures, the stress intensity factors have the largest val-
ues at A(#=0) in most cases. From the comparison between the
results of Figs. 4 and S, it is found the F I, values for
z-directional tension are one to four times larger than the ones for
x-directional tension in most cases, although the F/; , values are
in the same order. From Figs. 4 and S, it may be concluded that
the stress intensity factors take saturated values at nearly the same
value of L/D; for example, when G,;/G,=10?, the F 1, values
become saturated when L/D =100 in Figs. 4 and S. In Fig. 5, for
high G;/Gy, the stress intensity F;, decreases with L/D, be-
comes almost zero at L/D =10, and then increases. Usually, F I,
increases with increasing L/D; however, as L/D— 1, the interac-
tion between both ends of the cylinder seems to make F; ), larger.
In Fig. 6, when G,/G,,= 107 the stress intensity Fyx, changes in
sign as L/D increases, because in two auxiliary problems in Figs.
lc and d, Fy) depends on L/D differently. In Table 7 and Fig. 7
the results for a rectangular inclusion under transverse tension are
shown. The difference between the results for Figs. 5 and 7 is very
large, in other words, it seems difficult to use 2D solution to
evaluate the 3D results if the load is applied in the transverse
direction.
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4 Conclusion

In this paper, a cylindrical inclusion as'a 3D model of a short
fiber in composites was analyzed. Using the body force method
the problem is formulated as singular integral equations. The gen-
eralized stress intensity factors are calculated with varying the
aspect rati¢ L/ D and elastic ratio G;/G,, . The conclusions can be
made as follows.

(1) In the numerical solution of the singular integral equations
of the body force method, the unknown functions were approxi-
mated by the products of the fundamental density functions and
the power series along the short segments into which whole
boundary is discretized. The convergence of the present solution
is better than the cases of Nisitani [S] and Chen [3,4], where the
final results are obtained by using extrapolation. The average val-
ues of Fy , Frr,» Which is obtained from different components

of unknown functions, always have good convergence to the third
digit, and look reliable, even for the collocation number of each
division M =5, 6. The results are shown in the tables and figures.

(2) When the cylindrical inclusion under z-directional tension
the F I, values are one to four times larger than the ones when

the cylindrical inclusion under x-directional tension in most cases
although the F,;,; values are almost in the same order.

(3) From the comparison between the results of a 3D cylindri-
cal inclusion and a 2D rectangular inclusion, it appears though 3D
and 2D results have a similar tendency with the difference under
+30% in most cases when the load is applied in the longitudinal
direction. However, the difference is very large if the load is ap-
plied in the transverse direction. Care should be taken if the 2D
solution is applied to evaluate the 3D results.

(4) The values of Fyy, 3 Fpp, are only a few percent com-

pared with the values of Fy , Fyy,.
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Appendix: How to Evaluate Singular Integrals

In this analysis it is important to evaluate integrals in Eqs. (1a)
and (1b) accurately because they have singularities when the in-
tegral interval includes boundary collocation points. In the previ-
ous studies these integrals were evaluated as shown in the follow-
ing way [6,18]. The integral interval is divided into three parts as
shown in Fig. 3b and Eq. (6),

b

b e—¢g ete
Izj f(x)dx:f l)f()c)d)c+f ' of(x)dx-l- f(x)dx
a a e—¢gg

et+eg
=[|+12+13. (Al)

If we take suitable small values of 2 the integral / can be evalu-
ated as Eq. (A2),

I= fao flx)dx
-

g [C_
= f (—;—I+C0+Do Inle|+ C e +D e Inle|

e
+D,e? ln|e|+---)
=2Cyeq+2Dg(gg In g9 £0). ‘ (A2)
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Here, C_,, Cq, Dg are constants, which may be obtained from
expansion forms around x=¢ with painstaking tasks. In this study
therefore the following method is applied. First, we set

£g 2gq
12£=1—f fle)de, I,=I1— fle)de,
~Eg =2g
4eq
Ig.=1- fle)de. (A3)
—degp

These integrals can be expressed by
I,,=1-2Cyeq—2Dy(eglngg—ey)=I—C'~D'gyIn(2¢y),
Li;=1-2C'gy—D'(2ep)In(2gy), (Ad)
I3, =1—4C'eq— D' (4¢ey)In(4ey),

where C'=2(Cy—Dy), D'=2D,. Since the integrals I5,, Iy,
I3, exclude singular points, they can be evaluated accurately
through normal numerical procedure. Finally, we can evaluate [
from

=41, —4l, —I,. (AS5)
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