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A B S T R A C T

In this study, notch strength σB
notch was studied for a wide range of testing speed and temperature

in comparison with the static tensile strength at room temperature σB, RT
smooth. High–speed tensile

tests were conducted on high–Si ductile cast iron, conventional ferrite–pearlite ductile cast iron,
and fully pearlitic ductile cast iron at a stroke speed ranging between 8.5× 10−3 and
2.7× 102mm/s (strain rate of 2.1×10−4 and 1.8×101 s−1) and temperature ranging between
−180 °C and 22 °C. Then, σB

notch and σB, RT
smooth were compared in terms of the strain rate–-

temperature parameter R= T ln (A/ε )̇ to evaluate the combined influence of the strain rate ε ̇ and
temperature T. It was found that the notch strength σB

notch can be expressed as a unique master
curve in terms of R parameter for each material. Then, a notch–strengthening threshold criterion
R ≧ Rth was proposed to describe the lowest service temperature and highest strain rate that can
be applied to the structural components. Under the condition R ≧ Rth, σB

notch is always larger than
σB, RT

smooth, and therefore, notched components can be used safely. In other words, if R ≧ Rth, σB, RT
smooth

can be used to evaluate the notched components in machine design to prevent instantaneous
fractures.

1. Introduction

Ductile cast iron is not an individual material but a part of a group of materials that can be produced with a wide range of
properties by controlling their microstructure. Fig. 1 shows that the mechanical properties of even ferrite–pearlite ductile iron can be
altered considerably to meet demanding requirements [1]. As shown in Fig. 1, a higher strength can be achieved by increasing the
pearlite content in the ferrite–pearlite matrix. For example, the pearlite contents ranging between 45% and 55% correspond to a
tensile strength of approximately 500MPa, but the pearlite contents ranging between 80% and 90% correspond to a tensile strength
of more than 700MPa. The size and weight of various structures can be reduced using such high–strength materials.

In recent years, high–Si ductile cast iron, which is ferritic ductile iron strengthened by high–silicon solid solution, has attracted
great attention, especially in Europe [2–5]. The section sensitivity of this material is low, which means that it provides nearly the
same strength independent of product geometry. Furthermore, this material has a larger elongation and higher fatigue strength in
comparison with the conventional ferrite–pearlite ductile cast iron of the same tensile strength [6]. These advantages indicate the
potential of this new material for wide industrial application. However, one might think that this new material may have some
disadvantages.

Fig. 2 compares the Charpy absorbed energy values of JIS–FCD500, JIS–FCD700 [6,7], and high–Si ductile cast iron, whose tensile
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strength is nearly the same as that of JIS–FCD500. As shown in Fig. 2, the Charpy absorbed energy is considerably low in the case of
JIS–FCD700 [6,7] and high–Si ductile cast iron over the most parts of the temperature region. This is the main reason for the limited
industrial application of high–strength grade ductile cast iron. It should be noted that the Charpy impact test is unsuitable from the
viewpoint of selecting the structural materials because the impact speed is usually too high to evaluate real failures of real products.
The toughness and strength of ductile cast iron depends strongly on the strain rate and temperature [8–11], and the ductile–brittle
transition temperature increases with increasing the strain rate [9]. Moreover, the Charpy absorbed energy cannot be used directly in
machine design in a manner that is different from the commonly used tensile strength and yield strength criteria. By considering these

Nomenclature

A material constant value=108 (s−1)
d minimum test specimen diameter (mm)
Ktε ̇ strain rate concentration factor (–)
ℓ gauge length (mm)
P applied load (N)
Pmax maximum load obtained from the tensile test (N)
R strain rate– temperature parameter (K)
Rth notch strengthening threshold (K)

u(t) stroke displacement (mm)
u(t) / t tensile speed (mm/s)
T temperature (K)
ε ṅotch strain rate in notched specimen (s−1)
ε ṡmooth strain rate in smooth specimen (s−1)
ρ notch root radius (mm)
σB

notch notch strength in notched specimen (MPa)
σB

smooth tensile strength in smooth specimen (MPa)
σB, RT

smooth static tensile strength at room temperature (MPa)
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Fig. 1. Tensile strength and elongation of ferrite–pearlite ductile cast iron [1].
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Fig. 2. Results of Charpy impact test of JIS–FCD500, JIS– FCD700 [6,7] and high–Si ductile cast iron, the tensile strength of which is nearly the same
as that of JIS–FCD500.
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disadvantages, high–speed tensile testing is now being recognized as a standard dynamic strength test to evaluate impact strength
[12–16].

Therefore, in this paper, the notch strength and smooth tensile strength are compared in the case of instantaneous fracture, as
shown in Fig. 3. If the notch strength is sufficiently high, tensile strength can be used as the notch strength in machine design. In this
study, therefore, high–speed tensile tests are conducted at a stroke speed of 8.5× 10−3–2.7×102 mm/s (strain rate of
2.1× 10−4–1.8× 101 s−1) and temperature of −180 °C–22 °C. Then, notch strength and smooth tensile strength are discussed in
terms of the strain rate–temperature parameter R= T ln (A/ε )̇, A= 108 s−1 (const.), to evaluate the combined influence of strain rate
ε ̇ and temperature T.

Note that Charpy impact test has been used for many years as a unique method in many industries to ensure the safety of
structural materials including ductile cast irons under lower temperature. To propose an alternative method by extending Charpy
under different impact speed, a similar notch shape of Charpy will be focused. However, impact bending like Charpy is not suitable
for machine design because the bending strength cannot be used conveniently in contrast to the tensile strength and yield strength.
Therefore, in this paper, a notched round bar specimen having a specific notch shape will be considered under various tensile speed
test and various temperature. The obtained results will be compared each other under different conditions. The notch strength will be
also compared with the tensile strength of smooth specimen.

2. Experimental procedures

2.1. Preparation of specimens

In this study, we considered ferrite–pearlite ductile cast irons JIS–FCD500 with tensile strength σB, RT
smooth =500MPa, JIS–FCD700

with tensile strength σB, RT
smooth =700MPa, and fully pearlitic ductile cast iron (PDI) with tensile strength σB, RT

smooth =900MPa. In addi-
tion, we consider high–Si ductile cast iron, which is now expected to be used as a material for structural components [3–5]. Cast
specimens of those materials were prepared to investigate the notch strength. Fig. 4 shows the heat treatment procedure for obtaining
PDI. All test specimens, such as JIS No.4 tensile test specimen and high–speed tensile test specimen, were taken from JIS Type II
Y–shaped blocks JIS–G 5502 [1] of the highlighted sections in gray with dimensions 40×25×250mm, as shown in Fig. 5.

Table 1 presents the chemical compositions of specimens. Table 2 and Fig. 6 show and summarize, respectively, the results of
microstructure analysis according to JIS–G5502. As presented in Table 2, all specimens have nearly the same graphite structures. The
high–Si ductile cast iron has a fully ferritic matrix. JIS–FCD500 and JIS–FCD700 have pearlite ratios of 52.2 and 83.6, respectively.
PDI has a fully pearlitic matrix. Table 3 shows the static tensile property of JIS No.4 steel obtained by the tensile test specimen with a
diameter of 14mm, gage length of 50mm, and the procedure prescribed in JIS–Z 2241 standard.

2.2. High–speed tensile test

High–speed tensile tests were conducted on smooth specimens and notched round bar specimens, as shown in Fig. 7. The notch
has the same shape and dimensions as those of the Charpy V–notch specimen. Note that this notch root radius ρ=0.25mm is
considerably sharper than the real radius of casting products. Moreover, note that the notch depth of 2mm is considerably deeper
than the depth of surface scratches on the cast products. In this way, although the notch geometries are quite different from practical
use, in this study, Fig. 7(b) is proposed as an alternative specimen used in high speed tensile test, which may replace Charpy impact
testing. The tests were carried out using an electrohydraulic servo testing machine at stroke speed ranging between 8.5× 10−3 and
2.7×102 mm/s (strain rate of 2.1× 10−4 and 1.8×101 s−1) and at temperature T ranging between−180 °C and 22 °C, as shown in
Table 4.

The smooth tensile strength σB, RT
smooth and notch strength σB

notch are expressed in Eq. (1). Here Pmax=maximum load (kN) and
d= test specimen diameter

(4 mm).

=
=

⎫
⎬⎭

σ P πd
σ P πd

4 /
4 /

B
smooth

max
2

B
notch

max
2 (1)

In this study, the strain rate–temperature parameter R, given by Eq. (2), is used to evaluate the combined effects of strain rate and

Fig. 3. Comparison between smooth strength and notch strength.
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temperature on σB
smooth and σB

notch. The R parameter has been used until now to explain the influence of strain rate and temperature on
the tensile strength and yield stress of steel [17–20]. Decreasing R parameter means increasing strain rate or decreasing temperature,
or both. Then, deformation by dislocation motion becomes difficult with decreasing the R parameter.

= ×R T εln(A/ )̇ (2)

Here T=temperature (K), A= 108 (s−1) [17], ε ̇ is strain rate (s−1), ε ̇= ε ṡmooth for smooth specimens, and ε ̇= ε ṅotch for notched
specimens. The strain rate ε ṡmooth and ε ṅotch were calculated from the tensile speed u(t)/t, as given in Eq. (3).

Fig. 4. Normalizing condition for PDI.

Fig. 5. Schematic view of JIS Type II Y–shaped block (in mm) and specimen positions.

Table 1
Chemical compositions of specimens (mass%).

Material C Si Mn P S Cu Mg

High–Si ductile cast iron (As cast) 3.27 3.94 0.35 0.026 0.010 0.02 0.043
JIS-FCD500 (As cast) 3.75 2.08 0.40 0.021 0.004 0.24 0.044
JIS-FCD700 (As cast) 3.69 2.10 0.41 0.023 0.003 0.40 0.038
PDI (Normalizing) 3.66 2.09 0.41 0.024 0.004 0.73 0.041

Table 2
Microstructural characteristics of specimens.

Material Average nodule
diameter (μm)

Nodularity (%) Graphite area
fraction (%)

Pearlite area fraction of
matrix (%)

Ferrite area fraction of
matrix (%)

High–Si ductile cast iron (As cast) 26.9 90.2 10.4 0 100
JIS-FCD500 (As cast) 27.0 93.3 10.5 52.2 47.8
JIS-FCD700 (As cast) 26.0 95.8 10.1 83.6 16.4
PDI (Normalizing) 25.3 93.4 9.9 100 0
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=
= ×

⎫
⎬⎭

ε u t t
ε K u t t
̇ ( ( )/ )/
̇ ( ( )/ )/ε

smooth

notch
t ̇

l

l (3)

Here, u(t)= stroke displacement (mm), t=time (s), and ℓ=gage length (40mm). In this study, the stroke displacement applied
at the specimen grip end was proportional to time t. The strain rate concentration factor Ktε ̇ studied in our previous work [15,16] was
used to calculate ε ṅotch owing to the difficulty in measuring the strain rate at notch root experimentally. Since the relation between the

Fig. 6. Microstructures of specimens: high–Si ductile cast iron (a), JISFCD500 (b), JIS–FCD700 (c), and PDI (d).

Table 3
Tensile properties and Brinell hardness of specimens.

Material Tensile strength σB (MPa) Proof stress σ0.2 (MPa) Fracture strain εB (%) Brinell hardness

High–Si ductile cast iron (As cast) 543 426 20 186
JIS-FCD500 (As cast) 566 323 11 190
JIS-FCD700 (As cast) 711 394 9 229
PDI (Normalizing) 933 573 7 293

Fig. 7. Configuration of high–speed tensile test specimen (in mm): smooth specimen (a) and notched round bar specimen (b).
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stress concentration factor and strain rate concentration factor was clarified in our previous study [15,16], the value of Ktε ̇=9.49 is
very accurate for the notched specimen shown in Fig. 7(b) [15,16].

As shown in Fig. 7, the notch strength will be discussed by using the specific notch geometry similar to Charpy. This is because
Charpy impact test has been used in many years as a unique method to ensure the safety of structures. By using the similar notch
shape, an alternative method can be proposed by extending Charpy testing in more rational way. For example, impact bend loading in

Table 4
Temperature and strain rate condition used for the high–speed tensile test.

Material Test No. Notched specimen Smooth specimen

Temperature T (°C) Strain rate ε ̇notch (s−1) Temperature T (°C) Strain rate ε ̇smooth (s−1)

High–Si ductile cast iron No. 1 25.0 2.03×10−3 25.1 2.10×10−4

No. 2 24.7 1.97×10−1 25.2 6.91×10−2

No. 3 24.7 4.35×100 25.2 5.01×10−1

No. 4 25.0 1.11×101 25.7 2.45×100

No. 5 −42.9 1.97×10−3 25.2 6.84×100

No. 6 −42.6 2.00×100 −101.7 5.01×10−1

No. 7 −42.1 3.86×100 −130.5 5.00×10−1

No. 8 −99.6 3.78×10−3

No. 9 −100.1 2.02×10−3

No. 10 −100.5 1.96×10−2

No. 11 −130.4 1.95×10−3

No. 12 −129.4 3.90×10−3

JIS-FCD500 No. 1 25.1 2.02×10−3 25.0 2.10×10−4

No. 2 25.7 2.02×10−3 24.7 5.01×10−1

No. 3 25.6 4.25×100 25.2 6.49×100

No. 4 25.7 1.75×101 −99.8 5.01×10−1

No. 5 −101.2 4.26×100 −181.7 6.86×100

No. 6 −129.5 4.25×100

No. 7 −130.0 1.30×101

JIS-FCD700 No. 1 25.0 1.99×10−3 25.9 2.10×10−4

No. 2 24.8 4.33×10−3 25.9 4.61×10−2

No. 3 24.7 4.13×100 25.9 4.82×100

No. 4 24.9 1.75×101 −42.6 5.01×10−1

No. 5 24.4 1.78×101 −129.5 4.99×10−1

No. 6 −41.8 1.98×10−1

No. 7 −40.8 4.34×10−1

No. 8 −41.9 4.15×100

No. 9 −41.6 1.62×101

No. 10 −101.6 1.99×10−3

PDI No. 1 25.8 2.00×10−3 24.3 2.10×10−4

No. 2 25.8 3.07×10−1 24.3 4.61×10−2

No. 3 25.8 4.35×10−1 25.0 2.14×100

No. 4 25.0 2.89×100 −11.1 5.00×10−1

No. 5 25.8 4.14×100 −40.2 5.00×10−1

No. 6 26.0 1.84×101 −128.8 5.00×10−1
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Fig. 8. Tensile strength σB
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Charpy is not suitable for machine design because the bending strength cannot be used conveniently in contrast to the tensile strength
and the yield strength. Therefore, in this paper, a notched round bar specimen will be considered under high speed tensile test.
Although several previous papers shows that the impact strength is affected by the notch shape [21–23], the obtained results may be
useful for ensuring the safety of structures in a similar way of conventional Charpy testing.

3. Notch strength of high–si ductile cast iron in terms of R parameter

3.1. Tensile strength in terms of R parameter

In this study, the tensile strength and notch strength are considered in terms of the R parameter defined in Eq. (2). This parameter
was proposed to explain the effects of strain rate and temperature on the tensile strength and yield stress of steel [17–20,24]. Bennett
and Sinclair showed that the effects of strain rate and temperature on yield stress can be expressed in terms of the R parameter for
steel and BCC metals [17], and Fujii et al. provided experimental proof for this statement [18–20,24].

Fig. 8 shows the tensile strength σB
smooth in terms of the R parameter for high–Si ductile cast iron. A good correlation can be seen

between σB
smooth and R parameter at the strain rate ranging between 2.1×10−4 and 6.8×100 s−1 and temperature ranging between

−130 °C and 22 °C. Here, a decreasing value of R means an increase in the strain rate or a decrease in temperature, or both. It can be
seen that the tensile strength σB

smooth increases consistently with decreasing R in this experimental range.

3.2. Notch strength in terms of R parameter

Fig. 9 shows the notch strength σB
notch expressed in terms of R parameter for high–Si ductile cast iron. A unique σB

notch curve is
obtained in the strain rate ranging between 2.0×10−3 and 1.1× 101 s−1 and at temperature ranging between −130 and 22 °C.
With decreasing R value, σB

notch increases slightly in a similar way of σB
smooth, but σB

notch starts decreasing below R=4300 K. As shown
in Appendix C, the ductile dimple fracture surface disappears under R < Rth≒4300 K. If ductile fracture surface disappears, σB

notch

always decreases with decreasing parameter R. Fig. 9 also shows the static tensile strength at room temperature σB, RT
smooth. Except for the

region of small R value, the notch strength σB
notch is higher than the tensile strength σB, RT

smooth because of the notch–strengthening effect
[25,26,27]. The stress–strain curves for smooth and notched specimens at the room temperature are given in Appendix A. All the
materials considered in this study exhibit the notch–strengthening effect, as shown in Fig. 14. In Appendix B, σB

notch curves are
indicated in terms of the strain rate. It can be seen that the σB

notch curves depend largely on the temperature. Compared to Fig. 15,
Fig. 9 is very convenient to use because σB

notch is expressed as a master curve in terms of the parameter R.

3.3. Notch–strengthening threshold criterion R ≧ Rth for σB
notch ≥ σB, RT

smooth

The intersection of the σB
notch curve and σB, RT

smooth line can be regarded as the notch–strengthening threshold Rth. The condition
σB

notch ≥ σB, RT
smooth can be R ≧ Rth. Under R ≧ Rth, σB

notch is always higher than σB, RT
smooth. Therefore, if real products are used under the

condition R ≧ Rth, σB, RT
smooth can be used as the strength of notched components in machine design safely and conveniently to prevent

instantaneous fracture. The criterion R ≧ Rth provides the lowest service temperature and highest strain rate that can be applied to
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structural components.
One may think that the threshold is not well defined since in Fig. 9 only one test result at an R value is less than threshold.

However, as shown in Appendix C, under ductile fracture ratio fD=0% and notch strength σB
notch decreases with decreasing R. The

fracture observation shows that σB
notch is always less than σB, RT

smooth under R < Rth.

4. Notch strength of ferrite–pearlite ductile cast iron and safety verification through Rth

4.1. Tensile strength in terms of R parameter

Fig. 10 shows the tensile strength σB
smooth of JIS–FCD500, JIS–FCD700, and fully PDI. Each material has a unique σB

smooth curve in
terms of the R parameter in the strain rate ranging between 2.1×10−4 and 6.9× 100 s−1 and temperatures ranging between
−180 °C and 22 °C. It can be seen that the tensile strength σB

smooth increases consistently with decreasing R value in this experimental
range. This tendency is consistent with that of high–Si ductile cast iron, as shown in Fig. 8.

4.2. Notch strength in terms of R parameter

Fig. 11 shows the notch strength σB
notch in terms of the parameter R for JIS–FCD500, 700, and PDI. The R curves are similar to

those of high–Si ductile cast iron in Fig. 9. With decreasing R value, σB
notch increases but starts decreasing below R=2500, 4200, and

5100 for JIS–FCD500, JIS–FCD700, and PDI, respectively. In Fig. 11, the static tensile strength at room temperature σB, RT
smooth is

indicated by broken lines. Therefore, the intersection of the σB
notch curve and σB, RT

smooth line can be regarded as the notch–strengthening
threshold Rth.

Conventional ductile cast iron JIS–FCD500 has been used widely in industrial applications. Although its Charpy absorbed energy
is smaller, JIS–FCD700 has been used for several industrial applications, such as automotive underbody components, hydraulic
components, and civil engineering and construction components. In this study, we have proposed the notch–strengthening threshold
Rth. Under R ≧ Rth, σB

notch is always larger than σB, RT
smooth. Therefore, if real products are used under the condition R ≧ Rth, σB, RT

smooth can be
used as the notch strength safely and conveniently in machine design to prevent instantaneous fracture. One may think that the
threshold is not well defined in Fig. 11 since only FCD700 shows results below the threshold. However, as shown in Appendix C,
under ductile fracture ratio fD=0%, notch strength σB

notch decreases with decreasing R. The fracture observation shows that σB
notch is

always less than σB, RT
smooth under R < Rth for JIS-FCD500, 700 and PDI.

In Fig. 11, the notch strength is discussed by using the specific notch geometry similar to Charpy shown in Fig. 7. This is because
Charpy impact test has been used in many years as a unique method to ensure the safety of structures. By using the similar notch
shape, an alternative method can be proposed by extending Charpy in more rational way although several previous papers indicated
that the impact strength is affected by the shape of the notch [20–22]. In a similar way of Charpy results used in many years, the
obtained results as shown in Fig. 11 can be applied to ensuring the safety of structures.

4.3. Safety verification through notch–strengthening threshold criterion R ≧ Rth

In this section, we confirm the condition that R ≧ Rth is satisfied in real products made of JIS–FCD500 and JIS–FCD700. These
materials are used widely in industrial fields in a safe and sound manner; therefore, structural safety can be verified by confirming R
≧ Rth. Next, the criterion R ≧ Rth is applied to other materials to investigate their safety in a similar way.

Table 5 shows the requirements of architectural structures, which are expressed as R > 4522 [28,29]. This is an example of the
most severe requirement of structural components. Fig. 11 shows the R curves of JIS–FCD500 and JIS–FCD700 with the highlighted
range of R > 4522. R ≧ Rth is satisfied by both JIS–FCD500 and JIS–FCD700 under R > 4522. This is a good reason why
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JIS–FCD700 and JIS–FCD500 are used widely, although the value of Charpy absorbed energy is quite low. As stated earlier, if R ≧ Rth,
σB, RT

smooth can be used as the strength of notched components in machine design to prevent instantaneous fracture. Therefore, the
notch–strengthening threshold criterion R ≧ Rth can be conveniently used for judging the suitability of material, temperature and
strain rate.

Finally, Figs. 9 and 11 show the R curves for high–Si ductile cast iron and PDI with R > 4522. As shown in Figs. 9 and 11, high–Si
ductile cast iron totally satisfies the requirement and PDI almost satisfies R ≧ Rth. It may be concluded that the higher–strength ductile
cast irons can be used for a wide range of strain rate and temperature, even though their Charpy absorbed energy values are smaller
in comparison with those of the lower–strength ductile cast irons. Since the ductile cast iron considered in this paper exhibits a broad
range of mechanical properties, the present approach and discussion can be applied for evaluating other high–strength materials
under various temperature and strain rate.

5. Conclusions

In order to propose a useful evaluation method in structural design, which may replace Charpy impact testing, the notch strength
σB

notch was discussed and compared with the static tensile strength at room temperature σB, RT
smooth. High–speed tensile tests were per-

formed at stroke speed ranging between 8.5× 10−3 and 2.7× 102mm/s (strain rates of 2.1× 10−4–1.8×101 s−1) and at tem-
perature ranging between −180 °C and 22 °C. The materials considered were high–Si ductile cast iron, conventional ferrite–pearlite
ductile cast irons, and fully PDI. The strain rate–temperature parameter R was used for evaluating the combined influence of strain
rate and temperature on strength. Our conclusions are as follows:

(1) Notch strength σB
notch can be expressed in terms of the R parameter as a unique master curve for each material independent of the

temperature and strain rate (see Figs. 9 and 11). Then, the notch–strengthening threshold Rth was proposed to describe the lowest
service temperature and highest strain rate that can be applied to structural components.

(2) If R ≧ Rth, notch strength σB
notch is always higher than the tensile strength σB, RT

smooth. Therefore, if the real products are under R ≧ Rth,
their notch strength can be evaluated safely and conveniently using σB, RT

smooth in mechanical design to prevent instantaneous
fracture.

(3) Since the Rth values of high–Si ductile cast iron, JIS–FCD500, JIS–FCD700, and PDI satisfy the requirements of architectural
structure [28,29], all components made of these materials can be used safely. It may be concluded that the high strength–grade
ductile cast irons can be used over wide ranges of strain rate and temperature.

(4) Since the ductile cast iron considered in this paper exhibits a broad range of mechanical properties, the present approach and
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Fig. 11. Notch strength σB
notch of JIS–FCD500, JIS–FCD700, and PDI in terms of parameter R.

Table 5
Example of strain rate and temperature range acting on structural components.

Industrial field Strain rate (s−1) Temperature (°C) R (K)

Design Weld toes of beam-column (Architectural structure) ∼2 –18∼ 4522∼
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discussion can be applied for evaluating other high–strength materials under various temperature and strain rate.

Appendix A. Stress–strain curves of notched and smooth specimens

Fig. 12 shows the stress–strain curves of smooth and notched round bar specimens obtained by a static tensile test at temperature
T=25 °C for high–Si ductile cast iron, JIS–FCD500, JIS–FCD700, and PDI. The maximum strength of the notched round bar specimen
is higher than that of the smooth specimen, as shown in Fig. 12, for all materials. In previous studies, the notch–strengthening effects
of ductile cast iron and steel were discussed [25,26]. It was explained that notch–strengthening may be affected by the multiaxial
stress state at the notch root [25,26,27]. The multiaxial stress state is generated by the constraint of the deformation at the notch root
area. This multiaxial stress state can be expressed as the triaxiality factor. The notch–strength of ductile cast iron and steel increase
with increasing the triaxiality factor [25,26].

Appendix B. Notch strength σB
notch in terms of strain rate ε ṅotch depending on test temperature

Fig. 13 shows the relation between σB
notch and strain rate ε ṅotch at a temperature ranging between−130 °C and 25 °C obtained from

high–speed tensile test of high–Si ductile cast iron. In Fig. 15, σB
notch curves depend largely on the testing temperature. Using R

parameter, however, the σB
notchcurves in Fig. 13 can be expressed as a unique master curve, as shown in Fig. 9. Compared to Fig. 13,
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Fig. 12. Stress–strain curves of notched and smooth round bar specimens under static tensile test at temperature T=25 °C: high–Si ductile cast iron
(a), JIS–FCD500 (b), JIS–FCD700 (c), and PDI (d).
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Fig. 9 is very convenient for use because σB
notch is expressed as a master curve independent of temperature and strain rate. The master

curve expresses the ductile–brittle transition behavior uniquely in this test experimental range.

Appendix C. Ductile fracture ratio in terms of R parameter on the notched specimen

In Fig. 9, σB
notch starts decreasing below R=4300 K. Fig. 14 shows the ductile fracture ratio fD for high–Si ductile cast iron in
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comparison with σB
notch. Fig. 15 shows several fracture surfaces corresponding to the plot A, B and C in Fig. 14(b). As shown in Fig. 14,

fD decreases with decreasing parameter R. Finally, ductile dimple fracture disappears below R ≒ 4300 K. In Figs. 9 and 14, asterisk *
denotes fD= 0%. By choosing several examples a, b, c in Figs. 9 and 14, Fig. 16 shows almost linear stress–strain curves for fD=0%,
which is quite different from Fig. 12. In the region of fD=0%, σB

notch decreases with decreasing R. As shown in Fig. 14, under ductile
fracture ratio fD=0%, σB

notch decreases with decreasing R. The fracture observation shows that σB
notch is always less than σB, RT

smooth under
R< Rth for high-Si ductile cast iron.

Fig. 17 shows the ductile fracture ratio fD for JIS-FCD500, 700 and PDI in comparison with σB
notch. Similarly, in Fig. 17, under

ductile fracture ratio fD= 0%, σB
notch decreases with decreasing R. In Fig. 17, small R value data may be insufficient. However, the

fracture observation shows that σB
notch is always less than σB, RT

smooth under R < Rth for JIS-FCD500, 700 and PDI.

Fig. 15. Fracture surfaces of plot A (a), plot B (b) and plot C (c) in Fig. 14(b).
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Appendix D. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.engfracmech.2018.11.034.
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