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a b s t r a c t

Although a lot of interface crack problems were previously treated, few solutions are available under
arbitrary crack lengths and material combinations. In this paper the stress intensity factors of an edge
interface crack in a bonded strip are considered under tension with varying the crack length and material
combinations systematically. Then, the limiting solutions are provided for an edge interface crack in a
bonded semi-infinite plate under arbitrary material combinations. In order to calculate the stress inten-
sity factors accurately, exact solutions in an infinite bonded plate are also considered to produce propor-
tional singular stress fields in the analysis of FEM by superposing specific tensile and shear stresses at
infinity. The details of this new numerical solution are described with clarifying the effect of the element
size on the stress intensity factor. It is found that for the edge interface crack the normalized stress inten-
sity factors are not always finite depending upon Dunders’ parameters. This behavior can be explained
from the condition of the singular stress at the end of bonded strip. Convenient formulas are also given
by fitting the computed results.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Modern technology has led to employing of composite struc-
tures in automotive and aerospace industries and multiple layers
in microelectronics packaging. Failure of the multi-layer systems
often initiates at the free-edge corner; therefore, the analysis of
the edge interface crack is fundamental to our understanding of
the initiation and propagation of free-edge cracks. An exhaustive
investigation on the stress intensity factors (SIFs) will contribute
better understanding of the initiation and propagation of the inter-
facial cracks.

Quite a lot interface crack problems have been treated previ-
ously, and various numerical methods have been reported to deter-
mine the SIFs of an interface crack till recently (Akisanya and Fleck,
1997; Dong et al., 1997; Liu et al., 2008; Wu, 1996; Xu et al., 1999;
Yang and Kuang, 1996). However, several fundamental questions
are still unsettled for interface cracks. For example, the equivalent
condition is well-known for the SIFs between the central and edge
interface cracks in homogenous wide plate in Fig. 1(a) and (b). Say,
the stress intensity factor (SIF) of Fig. 1(b) is equivalent toffiffiffi

2
p
� 1:1215 times that of Fig. 1(a) when the two crack lengths

are the same as 2a = a0. On the other hand, for the interface cracks
the similar equivalent condition has not been revealed yet for the
SIFs between the central and edge interface cracks in the bonded

dissimilar wide plates. In our previous studies, therefore, the cen-
tral interface cracks in a dissimilar bonded plate in Fig. 1(c) have
been treated under arbitrary material combinations (Noda et al.,
2010; Zhang et al., 2011). In this study an edge interface cracks
in bonded dissimilar semi-infinite plate will be considered as
shown in Fig. 1(d), which is the most fundamental counterpart
problem for interface cracks.

In this paper the SIFs at the crack tip in a bi-material bonded
semi-infinite plate as shown in Fig. 1(d) will be investigated under
arbitrary combination of materials. In order to calculate the stress
intensity factors accurately, the exact solutions in an infinite
bonded plate will be also considered to produce proportional sin-
gular stress fields by applying specific tensile and shear stresses
at infinity. The details of this new numerical solution will be de-
scribed with varying the minimum element size around the crack
tip. The relationship between the SIF and the crack size in a bonded
finite plate is discussed; then, finally an approximate formula for a
shallow edge interface crack under arbitrary combination of mate-
rials and relative crack size will be given by fitting the computed
results.

2. Analysis method

2.1. The physical background

Teranisi and Nisitani (1999) were the first to propose a numer-
ical method using FE stress values to compute the SIF of a cracked
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homogenous plate. According to the theory of linear-elastic frac-
ture mechanics (LEFM), mode I SIF near the crack tip in a homog-
enous plate is defined by the following equation.

ryyðr; hÞ !
KIffiffiffiffiffiffiffiffiffi
2pr
p fIðhÞ ðr ! 0Þ ð1Þ

Here, KI is the mode I SIF, ryy is the normal stress component
ahead of the crack tip, fI(h) is trigonometric function to be derived
analytically. Specifically, when h = 0, Eq. (1) becomes

ryðrÞ !
KIffiffiffiffiffiffiffiffiffi
2pr
p ; ry ¼ ryyjh¼0 ðr ! 0Þ ð2Þ

Rearranging Eq. (2) gives KI=ry !
ffiffiffiffiffiffiffiffiffi
2pr
p

ðr ! 0Þ. For a given
point at h = 0 with a distance from the crack tip r = r0,
KI=ry ¼

ffiffiffiffiffiffiffiffiffiffiffi
2pr0
p

is constant and a following relationship can be de-
duced theoretically for two different crack problems A and B

½K�I =r�y�A ¼ ½KI=ry�B ð3Þ

Assuming the SIF for problem A is analytically given in advance,
while that for problem B is yet to be solved. Problem A is denoted
as the reference problem and problem B is denoted by the given

unknown problem. Here, the superscript ⁄ is introduced to indicate
the values of the reference problem A for notational convenience.
Although the values of r�y; ry in Eq. (3) cannot be computed by
FE analysis easily, the ratio of the value can be given without diffi-
culty. This is because the error for the problems A and B are nearly
the same if the same FE mesh is applied to the problems A and B

½KI�B
½K�I �A

¼ ½ry�B
½r�y�A

¼ ½ry;FEM�B
½r�y;FEM�A

although ½ry�B – ½ry;FEM�B ð4aÞ

It has been reported by Teranisi and Nisitani (1999) that the
stress distributions computed by FEM are almost the same under
the same loading conditions of KI = const for various crack prob-
lems, independent of the crack lengths. Then the SIF for problem
B (the given unknown problem) can be accurately determined
using Eq. (4). It should be noted that the same FE mesh grids have
to be used in the singular region near the crack tip to compute
r�y; ry for the two different crack problems A and B

½KI�B ¼
½ry;FEM�B
½r�y;FEM�A

½K�I �A ð4bÞ

2.2. Formulation for the interface crack problems

The method discussed in Section 2.1 cannot be used directly
into solving the interface crack problems since oscillatory singular-
ity is observed along the interface. Oda et al., 2009, extended this
method to the interface crack problems by creating the same
singularities for the reference and given unknown problems. A def-
inition of the SIFs for an interface crack in bonded dissimilar mate-
rials was proposed by Erdogan, 1965. The stress distributions along
the interface are defined as shown in Eq. (5)

ry þ isxy ¼
KI þ iKIIffiffiffiffiffiffiffiffiffi

2pr
p r

2a

� �ie
; r ! 0 ð5Þ

Here, ry; sxy denote the stress components near the crack tip, r is
the radial distance from the crack tip, and e is the bi-elastic constant
given by:

e ¼ 1
2p

ln
j1

G1
þ 1

G2

� ��
j2

G2
þ 1

G1

� �� 	
ð6Þ

jm ¼
3� 4mm ðplane strainÞ;
3� mm=1þ mm ðplane stressÞ;



ðm ¼ 1;2Þ ð7Þ

Where Gm ðm ¼ 1;2Þ and mm ðm ¼ 1;2Þ are the shear moduli
and Poisson’s ratios of either respective materials. The real and
imaginary parts of the oscillatory SIFs KI + iKII in Eq. (5) may be
separated as

KI ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

ry cos Q þ sxy

ry
sin Q

� �
ð8Þ

KII ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

sxy cos Q þ ry

sxy
sin Q

� �
ð9Þ

and

Q ¼ e ln
r

2a

� �
ð10Þ

Similarly, let us consider two different interface crack problems
C and D with the same crack lengths a = a0 and the same combina-
tion of materials e = e0, assuming the SIFs of problem C are given in
advance and those for problem D are yet to be solved. Problem C is
termed the reference problem whose values are marked with ⁄,
and problem D is termed the given unknown problem. Examining
the points with the same radial distances r = r0 for the two

Fig. 1. (a) Center cracked and (b) edge cracked homogenous wide plate (c) center
cracked and (d) edge cracked dissimilar bonded wide plate.
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problems C and D, then gives ½Q ��C ¼ ½Q �D ¼ e0 lnð r0
2a0
Þ. Recall Eqs.

(8) and (9), a proportional relationship given in Eq. (11) is estab-
lished if and only if Eq. (12) can be satisfied,

½KI�D
½K�I �C

¼ ½ry�D
½r�y�C

¼ ½ry;FEM�D
½r�y;FEM�C

;
½KII�D
½K�II�C

¼ ½sxy�D
½s�xy�C

¼ ½sxy;FEM�D
½s�xy;FEM�C

ð11Þ

s�xy

r�y

" #
C

¼ sxy

ry

� 	
D

ð12Þ

Then the SIFs of the given unknown problem (problem D) can
be computed using Eq. (13) in a similar manner as discussed in
Section 2.1. The condition of Eq. (12) can be satisfied by choosing
a suitable external load for the reference problem. The detailed
information about how to make the condition Eq. (12) satisfied
by using FEM will be discussed in Section 2.3

½KI�D ¼
½ry�D½K

�
1�C

½r�y�C
¼ ½ry;FEM�D½K

�
1�C

½r�y;FEM�C
;

½KII�D ¼
½sxy�D½K

�
2�C

½s�xy�C
¼ ½sxy;FEM�D½K

�
2�C

½s�xy;FEM�C
ð13Þ

2.3. Application of the proportional method using FEM

In this research, a crack along the interface of two bonded
dissimilar half-planes subjected to tension and shear as shown in
Fig. 2(a) is treated as the reference problem. The analytical solution
of the SIFs at the crack tip for the reference problem takes the form

K�I þ iK�II ¼ ðr1y þ is1xyÞ
ffiffiffiffiffiffi
pa
p

ð1þ 2ieÞ ð14Þ

where r1y ; s1xy are the remote uniform tension and shear applied to
the bonded dissimilar half-planes.

Using the principle of superposition, the stress components of
the reference problem subject to remote tension and shear
r1y ; s1xy can be expressed by using the values of that subjected to
pure unite tension r1y ¼ 1; s1xy ¼ 0 and pure unite shear r1y ¼ 0;

s1xy ¼ 1. Let r�y0;FEM , s�xy0;FEM , rr1y ¼1;s1xy¼0�
y0;FEM ; sr1y ¼1;s1xy¼0�

xy0;FEM and rr1y ¼0;s1xy¼1�
y0;FEM ;

sr1y ¼0;s1xy¼1�
xy0;FEM denote the stress components at the crack tip of the ref-

erence problem subjected to combined remote tension and shear
r1y ; s1xy, pure unit tension r1y ¼ 1; s1xy ¼ 0 and pure unit shear
r1y ¼ 0; s1xy ¼ 1, respectively. Then r�y0;FEM , s�xy0;FEM take the form

r�y0;FEM ¼ rr1y ¼1;s1xy¼0�
y0;FEM � r1y þ rr1y ¼0;s1xy¼1�

y0;FEM � s1xy ð15Þ

s�xy0;FEM ¼ sr1y ¼1;s1xy¼0�
xy0;FEM � r1y þ sr1y ¼0;s1xy¼1�

xy0;FEM � s1xy ð16Þ

Recall Eq. (12), the FE stress components at the crack tip for the
problems C and D behave

s�xy0;FEM

r�y0;FEM

" #
C

¼ sxy0;FEM

ry0;FEM

� 	
D

ð17Þ

where the superscript 0 stands for the values at the crack tip. Insert-
ing Eqs. (15) and (16) into Eq. (17) gives the solution of s1xy=r1y
needed for determining the external loads applied to the reference
problem

s1xy

r1y
¼

ry0;FEM � sr1y ¼1;s1xy¼0�
xy0;FEM � sxy0;FEM � rr1y ¼1;s1xy¼0

y0;FEM �

sxy0;FEM � rr1y ¼0;s1xy¼1�
y0;FEM � ry0;FEM � sr1y ¼0;s1xy¼1�

xy0;FEM

ð18Þ

Let r1y 1 ¼ 1 so that s1xy can be determined. Inserting
r1y ¼ 1; s1xy into Eq. (14) gives the values of the oscillatory SIFs
for the reference problem (problem C). Finally, the SIFs for the
given unknown problem (problem D) can be yielded using the pro-
portional relationship as given in Eq. (19)

½KI�D ¼
½ry0;FEM�D½K

�
I �C

½r�y0;FEM�C
; ½KII�D ¼

½sxy0;FEM�D½K
�
II�C

½s�xy0;FEM�C
ð19Þ

Specially, when both materials for a bonded structure are iden-
tical, all the imaginary terms in the discussion vanish. Thus, the
current method is also applicable to the homogenous crack
problems.

3. Post-processing technique and Convergence study

According to Oda et al., 2009, the proportional method does not
give reliable results if the relative crack size is considerably deep
(say, a=W P 0:4). Then, the efficiency and accuracy of the propor-
tional method is demonstrated by pursuing a convergence study in
this research. The effects of the minimum element size e and the
number of refined layers NL around the singular region on the
mode I SIF values are discussed. Finally, a post-processing tech-
nique of linear extrapolation is proposed to improve the accuracy.
The finite element analysis package MSC.MARC 2007 r1 (2007) is
used in this research. It is concluded that exact SIFs can be ob-
tained using linear extrapolation.

Two-dimensional plane-stress problem of a single-edge cracked
bonded dissimilar strip is analyzed for various crack lengths (for a
range of a=W ¼ 0:1 � 0:9). The geometric configurations for the gi-
ven unknown and reference problems are shown in Fig. 3(a) and
(b), respectively. The four-node quadrilateral elements are used
to mesh the reference and the given unknown problems. Fig. 4
shows the mesh type for a single-edge cracked strip (the given un-
known problem). The singular region around the crack tip is well
refined with increasing numbers of layers. The element size for
each inferior layer is one third of that of the superior one. And
the meshes for the reference problem are subdivided in a self-sim-
ilar manner as shown in Fig. 4. It should be noted that the meshes
around the singular zone for the reference and given unknown
problems are kept the same, then, the FE computational errors will
be eliminated in the proportional process. Here, four pairs of mod-
els (the reference + the given unknown problems) with different
minimum element sizes are tested to carry out the convergence
study. The minimum element size for each pair of models is a/35,
a/36, a/37, a/38 which corresponds to the total number of layers
NL = 9, 10, 11, 12 respectively. The detailed measurements for
the FE models are tabulated in Table 1. The length L is assumed

Fig. 2. Demonstration of (a) the reference problem (problem C) and (b) a given
unknown problem (problem D).
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to be much greater than the width W (L = 2W is used in the FE
model).

In the analysis, the elastic parameters are restricted to G2/
G1 = 4, m2 = m1 = 0.3. The SIFs for the edge cracked dissimilar bonded
strip a/W = 0.7, 0.8 are plotted and compared with those of Yuuki
and Cho (1989) and Ikeda et al. (1993), in Fig. 5. Those of others’
data are plotted in dashed lines. From this figure, it can be seen
that the normalized SIFs KI=r

ffiffiffiffiffiffi
pa
p

behave linear relationship with
the minimum element size. Final results can be obtained by using

linear extrapolation without adding too more refined layers. Here,
it should be noted that the exact values for KII=r

ffiffiffiffiffiffi
pa
p

are computed
through extrapolation although a simple linear behavior is not ob-
served for the last fourth digit. Also for no deep crack, post-pro-
cessing of extrapolation is applied since the effect of minimum
element size e to the SIFs is dominated. This means the original
method may include un-ignored error for the not deep crack case.
According to the authors’ knowledge, the minimum element size
e = a/35, a/36 may be recommended for the extrapolation since

Fig. 3. FEM model geometric configurations for (a) the given unknown problem and (b) the reference problem.

Fig. 4. FEM mesh demonstration of the geometry of a single edge-cracked strip.

Table 1
Measurements for the FE models.

The reference problem (mm) The given unknown problem (mm)

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

a 10 10 10 10 10 10 10 10
a/W 1/1620 1/1620 1/1620 1/1620 0.1�0.9 0.1�0.9 0.1�0.9 0.1�0.9
e 10/243 10/729 10/2187 10/6561 10/243 10/729 10/2187 10/6561
NL 9 10 11 12 – – – –

a: crack length of an edge crack or half crack length of a central crack a/W: relative crack length. W denotes the width of the plate. e: minimum element size around a crack tip
NL: number of the refined layers for the reference problem.

1244 N.-A. Noda, X. Lan / International Journal of Solids and Structures 49 (2012) 1241–1251
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they have the best compromise between accuracy and computa-
tional cost. It should be noted that the SIFs are almost constant
and independent of the minimum element size for central cracks
even in the case of long crack differently from Fig. 5.

The normalized SIFs are tabulated in Table 2 together with
those of Yuuki and Cho (1989) and Ikeda et al. (1993). Table 2 illus-
trates that the results are in very good agreement with the present
results. The errors are within 0.13% for mode I and 0.03 for mode II
for a/W = 0.8. Thus, the results computed by the current method
are much better than those by the original one especially for the
deep crack. Furthermore, the current method can get the accurate
SIFs without using too many layers of refined meshes (say, the total
number of layers is NL = 9, 10 in this research), and it has a faster
convergence than other numerical methods.

4. Relationship between the stress intensity factors and crack
length

Consider the bi-material bonded plate shown in Fig. 1(d). It is
composed of two elastic, isotropic and homogeneous semi-infinite

plates that are perfectly bonded along the interface. The material
above the interface is termed material 1, and the material below
is termed material 2. The SIFs for the aforementioned problem in
plane strain or plane stress are only determined on the two elastic
mismatch parameters a and b (Dundurs, 1969). Here, the Dundurs’
material composite parameters are defined as

a ¼ G1ðj2 þ 1Þ � G2ðj1 þ 1Þ
G1ðj2 þ 1Þ þ G2ðj1 þ 1Þ ð20Þ

b ¼ G1ðj2 � 1Þ � G2ðj1 � 1Þ
G1ðj2 þ 1Þ þ G2ðj1 þ 1Þ ð21Þ

where the subscripts denote material 1 or 2, Gm = Em/2(1 + mm)
(m = 1, 2), Gm, Em and mm denote shear modulus, Young’s modulus
and Poisson’s ratio for material m, respectively. jm = (3 � mm)/
(1 + mm) for plane stress and jm = (3 � 4mm) for plane strain. In this
research, only the SIFs for b P 0 in a � b space has been investi-
gated since switching material 1 and 2 (mat1() mat2) will only
reverse the signs of a and b (ða;bÞ () ð�a;�bÞ).

Fig. 5. Variations of normalized SIFs FI ¼ KI=r
ffiffiffiffiffiffi
pa
p

; FII ¼ KII=r
ffiffiffiffiffiffi
pa
p

with the minimum element size e for a bonded strip (a) a/W = 0.7 and (b) a/W = 0.8 subjected to uniform
tension.

Table 2
Normalized stress intensity factors for Fig. 2(b) (G2/G1 = 4, v1 = v2 = 0.3, plane stress).

a/W KI=r
ffiffiffiffiffiffi
pa
p

KII=r
ffiffiffiffiffiffi
pa
p

Present Oda et al. (2009) Yuuki and Cho (1989) Ikeda et al. (1993) Present Oda et al. (2009) Yuuki and Cho (1989) Ikeda et al. (1993)

0.1 1.209 1.207 1.201 1.209 �0.2393 �0.240 �0.238 �0.239
0.2 1.368 1.365 1.387 1.368 �0.250 �0.251 �0.254 �0.250
0.3 1.653 1.644 1.653 1.654 �0.288 �0.286 �0.288 �0.288
0.4 2.100 2.093 2.100 2.101 �0.359 �0.359 �0.359 �0.359
0.5 2.805 2.791 2.807 2.807 �0.484 �0.484 �0.483 �0.483
0.6 3.998 – 4.000 4.006 �0.716 – �0.716 �0.716
0.7 6.285 – 6.298 6.304 �1.207 – �1.209 �1.208
0.8 11.770 – 11.785 11.82 �2.532 – �2.534 �2.538
0.9 33.746 – – – �8.792 – – –

N.-A. Noda, X. Lan / International Journal of Solids and Structures 49 (2012) 1241–1251 1245
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The normalized SIFs at the crack tip of the edge interface crack
in bi-material bonded strips are systematically investigated by
varying the relative crack size alW, as well as the material elastic
parameters a and b. Here, we restrict our discussion to material
combinations with b = 0.3because the same phenomenon can be
found from others material combinations. The double logarithmic
distributions are shown in Fig. 6(a) and (b) for the normalized SIFs
FI ¼ KI=r

ffiffiffiffiffiffi
pa
p

; FII ¼ KII=r
ffiffiffiffiffiffi
pa
p

, respectively. From those figures, it
is found that the double logarithmic distributions behave linearity
when a/W < 0.01 and differ within about 5% at a/W < 0.05.

Furthermore, after examining every material combination, it is
found that the plus and minus of the slope of each curve is always
controlled by the sign of a(a � 2b). The value of the slope is equiv-
alent to the order of stress singularity at the interfacial end of a
perfectly bonded strip. Specifically, the slope of each line is positive
when a(a � 2b) < 0, zero when a(a - 2b) = 0 and is negative when
a(a � 2b) > 0. This is known as the condition of existence of free
edge stress singularity at the interfacial end. For example, free-
edge singularity exists when the slope is negative and vanishes
when it is positive. In particular, uniform stress distribution ap-
pears when the slope is 0. The values of a, b are discussed in the
appendix for typical engineering materials (Yuuki, 1992). Thus, it
can also be deduced for the limiting case, the values of
FI ¼ KI=r

ffiffiffiffiffiffi
pa
p

; FII ¼ KII=r
ffiffiffiffiffiffi
pa
p

for the bonded semi-infinite plate
(a=W ! 0) take the form:

aða� 2bÞ > 0 : FI; FII !1
aða� 2bÞ ¼ 0 : FI; FII ! finite
aða� 2bÞ < 0 : FI; FII ! 0

ð22Þ

Although when a(a � 2b) > 0 FI ?1 and FII ?1 as a/W ? 0,
actual crack extension along the interface may be controlled by
the stress intensity factors KI, KII instead of FI, FII. In order to

simulate the crack extension it is important to consider how the
values of KI, KII change depending on the crack length. The double
logarithmic distributions of the general SIFs KI and KII at the crack
tip are plotted in Fig. 7. A good linear relationship within the zone
of the free-edge singularity can also be found from this figure.
Here, it should be noted that all the SIFs increase monotonically
with increasing relative crack length a/W for all the material com-
binations. Since FI, FII sometimes go to infinity, one may misunder-

Fig. 6. The double logarithmic distributions of the dimensionless stress intensity
factors (a) FI ¼ KI=r

ffiffiffiffiffiffi
pa
p

and (b) FII ¼ KII=r
ffiffiffiffiffiffi
pa
p

at the crack tip for shallow edge
interface cracks.

Fig. 7. The double logarithmic distributions of the general SIFs KI and KII at the crack
tip for shallow edge interface cracks.

Fig. 8. (a) The bi-material bonded semi-infinite plate and (b) finite strip.
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stand that KI, KII also approach infinity as a/W ? 0. However, as
shown in Fig. 7, it is seen that KI, KII always approach zero indepen-
dent of material combinations as a/W ? 0.

5. Singular stress field at the end of bonded plate

As shown in the previous section, the stress intensity factor of
an edge interface crack may be affected by the singular stress field
appearing at the end of bonded plate. It should be noted that more
detail investigation reveals that the slopes of FI ¼ KI=r

ffiffiffiffiffiffi
pa
p

; FII ¼
KII=r

ffiffiffiffiffiffi
pa
p

in Fig. 6 correspond to the singular index k at the end
of bonded plate without crack. It is known that this singularity at
the end of bonded plate can be determined by the following rela-
tionships (Bogy, 1968, 1971)

aða� 2bÞ > 0 : k < 1; ry ¼ ryyjh¼0 !1 ðr ! 0Þ Singularity exist
aða� 2bÞ ¼ 0 : k ¼ 1ry ¼ ryyjh¼0 ! finite ðr ! 0Þ Singularity ¼ 0
aða� 2bÞ < 0 : k > 1ry ¼ ryyjh¼0 ! 0 ðr ! 0Þ Singularity vanish

ð23Þ

As a result, the interface crack within this zone behaves in the
following ways

aða� 2bÞ > 0; KI=r
ffiffiffiffiffiffi
pa
p

!1; KII=r
ffiffiffiffiffiffi
pa
p

!1;

aða� 2bÞ ¼ 0; KI=r
ffiffiffiffiffiffi
pa
p

; KII=r
ffiffiffiffiffiffi
pa
p

! finite values

aða� 2bÞ < 0; KI=r
ffiffiffiffiffiffi
pa
p

! 0; KII=r
ffiffiffiffiffiffi
pa
p

! 0

In this section, the singular stress fields near the free-edge
corner are described in detail because they control the interface
crack within the singular zone. Let us consider a perfectly bonded

dissimilar plate without crack as shown in Fig. 8 with a cylindrical
polar coordinate (r,h) centered at the interface corner. The singular
field around the bonded end can be expressed in the form (Chen
and Nishitani, 1993).

rh ¼ Krk�1fhhðr; hÞ; srh ¼ Krk�1frhðr; hÞ ð24Þ

Here K is the intensity of stress singularity at bonded corner, r is
the radial distance from the corner, and k is the order of stress sin-
gularity. Also fhhðr; hÞ; f rhðr; hÞ are known functions of r, h given in
Chen and Nishitani, 1993.

Many studies have considered the order of the stress singularity
for bonded corners with varying geometries and material combina-
tions (see, Williams, 1952; Bogy, 1968, 1971; Bogy and Wang,
1971; Hein and Erdogan, 1971; Dempsey and Sinclair, 1979; Van
Vroonhoven, 1992). For the bonded strip shown in Fig. 8, the angles
which the traction-free surfaces make with the interface are p/2,
then the values of k can be obtained by solving the following
equation

Dða; b; kÞ ¼ cos2 p
2

k
� �

� ð1� kÞ2
h i2

b2

þ 2ð1� kÞ2 cos2 p
2

k
� �

� ð1� kÞ2
h i

ab

þ ð1� kÞ2½ð1� kÞ2 � 1�a2 þ cos2 kp
2

� �
sin2 kp

2

� �
¼ 0

ð25Þ

where k is the zero of Dða;b; kÞ in 0 < ReðkÞ < 1 that has the
smallest real part. In general, Dða;b; kÞ is expected to have several
zeros in 0 < ReðkÞ < 1: In all cases where more than one zero of
Dða;b; kÞ occurs only the smallest one will be exhibited (Bogy,
1971). The values of k are computed for arbitrary material com-
posite parameters (a, b), and the results are plotted and tabulated
in Fig. 9 and in Table 3, respectively. Here, it should be noticed
that k for any material combination can be obtained from Table 6
since kða;bÞ ¼ kð�a;�bÞ.

Although the singular index has been discussed in many papers,
the intensity of singular stress fields has just recently been ob-
tained. Reedy and Guess, 1993 have determined the magnitude
of intensity of stress singularity for a thin elastic layer sandwiched
between two rigid substrates. Akisanya and Fleck (1997), applied
the contour integral to evaluate the singular stress field at the
free-edge of a long bi-material strip subjected to uniform tension.
Xu et al. (1999) proposed numerical methods to determine the
multiple stress singularities and the related stress intensity coeffi-
cients. Chen and Nishitani obtained the exact expression of the sin-
gular stress field for a bonded dissimilar strip. From this paper, it is
known that the root of Eq. (25) has a single real root 0 < k < 1

Fig. 9. Order of stress singularity k� 1.

Table 3
Singular index k for various combination of materials.

a b = �0.2 b = �0.1 b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.45

0 1 1 1 1 1
0.05 0.98378 0.99035 0.99800 1.00613 1.01403
0.1 0.96593 0.97774 0.99205 1.00831 1.02512
0.15 0.94684 0.96269 0.98253 1.00626 1.03279
0.2 0.92685 0.94571 0.96987 1 1.03604 1.07562
0.3 0.90752 0.93713 0.97605 1.02764 1.09640
0.4 0.86549 0.89741 0.94025 1 1.09130
0.5 0.82096 0.85320 0.89662 0.95796 1.05584
0.6 0.77459 0.80597 0.84801 0.90711 1
0.7 0.75644 0.79606 0.85104 0.93477 1.11741
0.75 0.73090 0.76909 0.82169 0.90048 1.05468
0.8 0.70481 0.74151 0.79163 0.86554 1
0.85 0.67824 0.71331 0.76091 0.83006 0.94923 1.08125
0.9 0.65105 0.68448 0.72953 0.79410 0.90075 1
0.95 0.62320 0.65496 0.69745 0.75761 0.85364 0.93488
1 0.59461 0.62466 0.66461 0.72053 0.80731 0.87624

N.-A. Noda, X. Lan / International Journal of Solids and Structures 49 (2012) 1241–1251 1247



Author's personal copy

when a(a � 2b) > 0. In this research, in order to examine the stress
field around the free-edge corner, Kr is introduced to define the
intensity of singular stress as

Kr ¼ lim
r!0
½r1�k � rhjh¼p=2� ð26Þ

The intensity of stress singularity K for an un-cracked bonded
dissimilar strip can be obtained using (Chen and Nishitani, 1993).

K ¼ Kr=ð4k cosðkp=2Þ½ðkþ 1� kbÞ cosðkpÞ þ ðkþ 1Þð2kb

� 1Þ � kbþ 2k2ðkþ 1Þða� bÞ�Þ ð27Þ

As a supplementary work to the authors’ previous research
(Noda et al., 2007), the normalized values of Kr=rW1�k for k > 1
are computed in this paper, and are plotted in Fig. 10 against mate-
rial composite parameters a for b ¼ �0:2 � 0:4.

6. Stress intensity factors for the edge interface crack in a
bonded semi-infinite plate

6.1. Approximate expressions for the stress intensity factors of a
bonded semi-infinite plate

In Section 4, it has been proved that KI=r
ffiffiffiffiffiffi
pa
p

and KII=r
ffiffiffiffiffiffi
pa
p

have finite non-zero values only when aða� 2bÞ ¼ 0. Here, the
normalized SIFs FI ¼ KI=r

ffiffiffiffiffiffi
pa
p

and FII ¼ KII=r
ffiffiffiffiffiffi
pa
p

for an edge
interface crack in a bonded semi-infinite plate for a = 2b are plot-
ted in Fig. 11. From the figure, it is clear that FI and FII behave
quadratic and linear relationship, respectively. The computed
results for a = 2b are also tabulated in Table 4. Then, the approxi-
mate expression as in Eq. (28) is given by fitting the computed re-
sults. Specifically, the result for the homogenous semi-infinite
plate (when two materials are identical a = b = 0) computed in this
research is KI=r

ffiffiffiffiffiffi
pa
p

¼ 1:1208, compared with the famous theoret-
ical one KI=r

ffiffiffiffiffiffi
pa
p

¼ 1:1215, and it has an error of 0.062%

KI=r
ffiffiffiffiffiffi
pa
p

¼ 1:121þ 0:0159b� 0:221b2

KII=r
ffiffiffiffiffiffi
pa
p

¼ �0:684b
ð28Þ

In conclusion, the solution of SIFs at the crack tip for a bonded
dissimilar semi-infinite plate takes the form

KI=r
ffiffiffiffiffiffi
pa
p

! 0; KII=r
ffiffiffiffiffiffi
pa
p

! 0 when aða� 2b < 0;

KI=r
ffiffiffiffiffiffi
pa
p

¼ 1:121þ 0:0159b� 0:221b2; KII=r
ffiffiffiffiffiffi
pa
p

¼ �0:684b

when aða� 2bÞ ¼ 0;

KI=r
ffiffiffiffiffiffi
pa
p

!1; KII=r
ffiffiffiffiffiffi
pa
p

!1 when aða� 2b > 0:

8>>><
>>>:

ð29Þ

6.2. Stress intensity factors for a shallow edge interface crack in a
bonded finite strip

In this section, the SIFs for the shallow edge interface cracks
within the singular zone as shown in Fig. 12 are investigated using
the improved proportional method. The results of FI � ðW=aÞ1�k and
FII � ðW=aÞ1�k are plotted against logarithmic relative crack length
a/W in Fig. 13(a) and (b), respectively. The material composite
parameter b in Fig. 10 are restricted to b ¼ 0:3, and similar
phenomenon can be found from others material combinations of
restricted b. As can be seen from these figures, the values for a
given material combination approach a constant with more than
3-digit when a=W < 10�2. Thus, we propose the following formula
to calculate the SIFs at the crack tip for the shallow edge interface
cracks in a bonded strip

KI

r
ffiffiffiffiffiffi
pa
p � ða=WÞ1�k ¼ CI;

KII

r
ffiffiffiffiffiffi
pa
p � ða=WÞ1�k ¼ CII ð30Þ

where CI, CII are constants depending upon the relative elastic prop-
erties of materials. The results for the coefficients CI, CII are plotted
and listed against material composite parameters in Fig. 14(a) and
Table 5 as well as in Fig. 14(b) and Table 6, respectively. The nor-
malized SIFs FI, FII are often used to express the results of analysis.

Fig. 11. Normalized SIFs (a) FI ¼ KI=r
ffiffiffiffiffiffi
pa
p

and (b) FII ¼ KII=r
ffiffiffiffiffiffi
pa
p

for a = 2b of an
edge interface crack in a bonded semi-infinite plate.

Table 4
Results of the dimensionless stress intensity factors for a = 2b.

b KI=r
ffiffiffiffiffiffi
pa
p

KII=r
ffiffiffiffiffiffi
pa
p

0 1.121 0
0.1 1.120 �0.067
0.2 1.115 �0.135
0.3 1.106 �0.204
0.4 1.092 �0.273
0.45 1.083 �0.307

Fig. 10. The values of Kr=rW1�k for various combination of materials.
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However, as indicated in Eq. (22), FI, FII are not suitable for edge
interface cracks, because they sometimes go to infinity and some-
times approach zero as a=W ! 0. However, as indicated in Fig. 13,
CI ¼ FIðW=aÞ1�k

; CII ¼ FIIðW=aÞ1�k always have finite values when
a/W ? 0. The reason can be explained from Fig. 10. In Fig. 10,
KrðrWÞ1�k always have finite values although Kr values themselves
sometimes take infinite values and sometimes take zero.

From Figs. 10 and 14(a), it is seen that the coefficient curves CI

in Fig. 14(a) are similar to the intensities of singular stress of per-
fectly bonded strip in Fig. 10. This is because the SIFs for the shal-
low edge interface cracks are controlled by the singular zone at the

interface corner for the perfectly bonded strip without crack as
shown in Fig. 12.

7. Conclusions

In this paper an edge interface crack in a bonded strip were ana-
lyzed with varying the crack length and material combinations sys-
tematically. Then, the limiting solutions were provided in a bonded
dissimilar semi-infinite plate subjected to remote uniform tension
under arbitrary material combinations. To calculate the stress
intensity factors, an exact solution for bonded infinite plate were

Fig. 12. Shallow edge interface crack in a bonded strip.

Fig. 13. The values of (a) FI � ðW=aÞ1�k and (b) FII � ðW=aÞ1�k for b = 0.3. Fig. 14. Constants (a) CI and (b) CII for various combination of materials.
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also considered to produce proportional singular stress fields by
applying specific tensile and shear stresses at infinity. The details
of this new numerical solution are described with clarifying the ef-
fect of the element size on the stress intensity factor.

1. The stress intensity factors are expressed for an edge crack in
bonded semi-infinite plate in the following form

K1=r
ffiffiffiffiffiffi
pa
p

; K2=r
ffiffiffiffiffiffi
pa
p

! 0 when aða� 2bÞ < 0
K1=r

ffiffiffiffiffiffi
pa
p

¼ 1:121þ 0:0159b� 0:221b2

K2=r
ffiffiffiffiffiffi
pa
p

¼ �0:684b when aða� 2bÞ ¼ 0
K1=r

ffiffiffiffiffiffi
pa
p

; K2=r
ffiffiffiffiffiffi
pa
p

!1 when aða� 2bÞ > 0

8>>><
>>>:
2. It is found that the stress intensity factors can be expressed in fol-
lowing forms if the edge interface crack is small enough within the
zone of free-edge singularity of a bonded strip. Those coefficients C1,
C2 are computed and tabulated under all material combinations in
the a � b space

K1

r
ffiffiffiffiffiffi
pa
p � ða=WÞ1�k ¼ C1;

K2

r
ffiffiffiffiffiffi
pa
p � ða=WÞ1�k ¼ C2

3. The singular stress field for a bonded strip without crack is inves-
tigated under various material combinations because the SIFs for
the small interface edge crack are controlled by this singular stress
field.

Appendix. Dundurs’ composite parameters for engineering
materials

Till recently, several studies have considered the Dundurs’ com-
posite parameters of typical engineering materials. Suga et al.
(1988) investigated the parameters and mechanical compatibility

of various material joints. Yuuki (1992) showed the variations of
the parameters in the a � b space for the materials combinations
among metal, ceramics, resin, and glass. The results are tabulated
in Table A1 and re-plotted in Fig. A1. Consider the symmetry of
a � b space for the bi-material joints, only the right part (a > 0) is
given in Fig. A1. The origin a = b = 0 represents combinations of
identical materials, and the a � b space is located within the paral-
lelogram region which is composed by the lines b = 1/
4(a ± 1), a = 0, a = 1. Material combinations of a = 2b are plotted
in the dashed line. Uniform stress distributions can be observed
for a = 2b. And the a � b space can be divided into two regions
by the line a = 2b. Each pair of (a,b) above the line has no singular-
ity and is denoted as good pair (a(a � 2b) < 0). And the one below
the line is denoted as bad pair (a(a � 2b) > 0) since stress singular-
ity exists near the interface corner.

As can been seen from Fig. A1, most material combinations are
located in the so called ‘‘bad pair’’ region. However, metal-to-glass
joints distribute along the line a = 2b, and a considerable number
of metal-to-glass joints can be found in the ‘‘good pair’’ region. In
addition, metal/metal, ceramics/ceramics and glass/glass joints
are also found to have ‘‘good pair’’ material combinations.
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