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ABSTRACT
In the case of autonomous lunar and planetary ex-
ploration, terrain classification is necessary. In re-
cent years, research has been focused on terrain
classification using convolutional neural networks
(CNNs). However, these studies did not consider
the method of updating the terrain classifier when
new data is obtained. In this paper, two updating
methods for CNNs are applied and evaluated. One
fine-tunes the terrain classifier with all the data ob-
tained until the training and the other trains it with
only the new data using elastic weight consolida-
tion [10]. Both the methods enabled the terrain
classifier to classify the terrain of a new environ-
ment while retaining the ability to recognize the
terrain types of the previous environment.

1 INTRODUCTION
In the case of lunar and planetary missions, be-
cause of communication delays between the on-
site rovers and a ground station on Earth, tele-
operation is inefficient. Therefore, lunar and plan-
etary rovers are required to have an autonomous
exploration ability. In order to perform explo-
ration, firstly, rovers are required to move to an
explored point. Therefore, rovers are required to
have autonomous mobility to accomplish explo-
ration autonomously. Autonomous mobility can
be realized in three steps. The first step involves
understanding the environment in which robots
recognize the location of obstacles, shape of the
ground, properties of the ground, or where the
robots are located. Then, a path is generated based
on the information obtained from the first step. Fi-
nally, the robots move along the generated path.
Therefore, environmental understanding is an es-
sential element of autonomous locomotion. Ter-
rain classification is an important technique for
environmental understanding as the surface of ce-
lestial bodies is covered with sand or rocks, and
the mobility and optimal control performances de-
pend on what surface the rovers are moving.

Thus far, several studies have been conducted on
terrain classification[1][2][3][4][5][6]. A support
vector machine with color feature or vibration fea-

ture has been used in [1][5] and classifies a Mars-
analogous terrain into three types of terrain in [1].
In [2], a vision-based terrain classifier using con-
volutional neural networks (CNNs) was employed
for pixelwise prediction by using images as in-
puts. This classifier successfully classified Mars
images from a Mars rover into six classes based
on the size of the rocks in the images. In [6], li-
dar data had been processed using a 3D CNN for
finding the landing site of helicopters. A CNN has
also been employed as a terrain classifier for pix-
elwise prediction by combining point cloud data
with an RGB image to improve the performance
of terrain classification in [3]. However, these
studies assume that all the necessary data is avail-
able when the terrain classifier is trained. In the
case of an actual mission, it is difficult to obtain
all the data before landing at the site and obtaining
new environmental images as rovers travel over
the surface of the celestial bodies. Therefore, a
method of updating the trained terrain classifier
should be considered. In this paper, we present
two methods of updating the terrain classifier and
evaluate them using image data.

2 METHODOLOGY OF TERRAIN
CLASSIFICATION

2.1 Structure of Terrain Classifier

We constructed a vision-based terrain classifier
using CNNs. The CNN automatically extracts
features from the inputs and uses them to rep-
resent the outputs while other types of machine
learning requires handcrafted features. As it is
difficult to determine significant features before
encountering the site, the application of conven-
tional machine learning that requires handcrafted
features is difficult. In contrast, as CNNs do not
require handcrafted features, the terrain classifier
can adapt to unknown environments. As the struc-
ture of the CNN, we employed the pyramid scene
parsing network (PSPNet) [8], which is used for
semantic segmentation. The PSPNet comprises a
CNN that extracts features from the input, a pyra-
mid pooling module with four different sizes of
pooling layers in parallel, and convolution layers.
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Figure 1: Structure of terrain classifier

In our terrain classifier, as a feature extractor in
the PSPNet, a 50-layer residual network (ResNet)
[9] is used. The softmax function is applied to the
outputs from the last layer in order to predict the
probability of the object class of each pixel. The
overall structure is shown in Figure 1.

2.2 Updating Methods for the Terrain
Classifier

We compared two updating methods for the ter-
rain classier. First, fine-tuning the terrain classifier
with all the data obtained until the training step.
In this method, each time new data is obtained the
terrain classifier is trained with all the data while
using the optimal parameters of last training as the
initial parameters.

Secondly, updating the CNN based on the impor-
tance of each parameter in the CNN by using elas-
tic weight consolidation (EWC) [10]. The EWC
measures the importance of the parameters in the
CNN by computing the diagonal components of
the Fisher information matrix. When training the
terrain classifier, parameters that are not important
for the previous task are preferentially adjusted by
adding a penalty term to the loss function of the
previous task, which measures the difference be-
tween the desired outputs and actual outputs, as
follows

L(x; θ) = Lnew(x; θ) +
∑

i

λ

2
Fi(θi − θ

∗
prev,i)

2 (1)

where x is the input data, θ represents all the pa-
rameters in the CNN, L(x; θ) is the new loss func-
tion, Lnew(x; θ) is the loss function of the new task,
λ represents how important the previous task is,
Fi is the i th element of the diagonal of the Fisher
information matrix, θi is the i th parameter, and
θ∗prev,i is the i th optimal parameter that achieved

Figure 2: Testbed

the best performance in the previous task. In this
research, the Fisher information matrix is calcu-
lated by averaging the gradient of the loss function
of the previous task using 100 samples of the pre-
vious task with an optimal parameter as follows.
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where Lprev(x; θ) is the loss function of the previ-
ous task and xn is the input data of the n th sample
of the previous task.

3 EXPERIMENT AND
EVALUATION

3.1 Dataset

In order to obtain the image data for construct-
ing a dataset, were used a rover testbed (Fig-
ure 2) developed in our lab [7], which has an
omni-directional camera on top of it that provides



Figure 3: Mission scenario overview

(a) Environment A (b) Environment B

Figure 4: Sample images of two environments

a 360 degree field of view image. The omni-
directional camera is useful for path-planning be-
cause it provides the direction in which the rover
should move once the terrain classification is com-
pleted. In this study, we assume the scenario
wherein the rover starts its exploration at envi-
ronment A and then moves to environment B and
then to environment A’, which is similar to en-
vironment A, as shown in Figure 3. At environ-
ments A and B, the rover obtains the image data
and the terrain classifier is trained with this data.
We prepared datasets for the environments A and
B. Example images of the two environments are
shown in Figures 4(a) and 4(b). Environment A
has numerous rocks on the ground (dataset A) and
environment B has a few small rocks (dataset B).
The datasets consist of image data and the corre-
sponding label data that has been labeled by a hu-
man. An example labeled image is shown in Fig-
ure 5(a) and 5(b). The label data comprises seven
classes: sky, rover, ground, rock, person, hill, and
null. The number of training data is 40 for envi-
ronment A and 8 for environment B. These data
are augmented by rotating the image data by 6 de-
grees from 0 to 360 degrees because the images
obtained using an omni-directional camera has ro-
tational symmetry. The number of testing data is
7 and 4, respectively.

(a) Environment A (b) Environment B

Figure 5: Sample label images of two environ-
ments

3.2 Training Condition

In this paper, we conducted the following four
trainings.

• Training 1: Train terrain classifier with
dataset A. The number of iterations is 12000.
The part of ResNet is initialized using the pa-
rameters obtained from the training on a task
of image classification and the other parame-
ters are randomly initialized.

• Training 2: The terrain classifier trained in
training 1 by fine-tuning with dataset B is up-
dated. The number of iterations is 4800.

• Training 3: The terrain classifier trained in
training 1 by fine-tuning with datasets A and
B is updated. The number of iterations is
4800.

• Training 4: The terrain classifier trained in
training 1 using EWC with dataset B is up-
dated. The number of iterations is 2400. λ
was determined from the preliminary train-
ing and set as 10000000 for the EWC.

As a loss function for training 1, 2, and 3, we used
cross entropy, which is defined as follows.

L(x; θ) =
1

WH

W∑
i=1

H∑
j=1

C∑
k=1

di jkln(yi jk(x, θ)) (3)

where W is the height of the input image, H is
the width of the input image, c is the number
of the class, di jk is the target output that takes a
value of 1 if the pixel (i, j) belongs to the class
k, and yi jk(x, θ) is the output of CNN. The loss
function for training 4 is equation (1) wherein
Lnew is substituted by equation (3). In order to
minimize this loss function, we used the Adam
optimizer[11] with the hyperparameters shown in
Table 1 through all training.



3.3 Result

For the purpose of evaluation, the below equation
is used.

accuracy =
NPc

NP
× 100 [%] (4)

where NP is the number of all the pixels, and
NPc is the number of the pixels predicted cor-
rectly. The per-class accuracy is also evaluated.
The pixel accuracy is shown in Tables 2 and 3 and
per-class accuracy is shown in Tables 4 and 5. In
addition, examples of the segmented images are
shown in Figures 6 and 7, where the input images
are Figures 4(a) and 4(b) and the corresponding
ground truth images are Figures 5(a) and 5(b).

3.3.1 Training 1

From Figure 6 and Table 2, the terrain types in
environment A are successfully classified with an
accuracy of 97.6% in training 1. In contrast, from
Figure 7 and Table 3, it is observed that the ter-
rain classifier is not applicable to environment B
and the accuracy is 76.5 %. This is because only
dataset A is used for training the terrain classifier
and the information of environment B is not in-
cluded.

3.3.2 Training 2

Although from Table 2, it is observed that the ac-
curacy does not decrease much on fine-tuning the
terrain classifier with dataset B, from Figure 6, it
is observed that the terrain classifier lost the abil-
ity to recognize rocks on the ground. This can
be also observed by comparing Tables 4 and 5.
This is because the knowledge regarding environ-
ment A is lost while fine-tuning the terrain classi-
fier with dataset B.

3.3.3 Training 3

From Figures 6 and 7 and Tables 2 and 3, we
can see that the terrain classifier updated by fine-
tuning with all the data can classify terrain types
of environment B with keeping the capability of
terrain classification of environment A. This is be-
cause the information of both environments A and
B is taken into account while training.

Table 1: Hyperparameters of Adam optimizer
learning rate 0.00001

momentum term β1 0.9
momentum term β2 0.999

3.3.4 Training 4

From Figure 7, it can be observed that the terrain
classifier updated using EWC can classify the ter-
rain of environment B. From Figure 6, although
the terrain classifier lost the ability to recognize
small rocks, which can be classified by using the
terrain classifier trained through fine-tuning with
all the data, it can still classify large rocks. As
described in section 2.2, the use of EWC results
in a restriction on the parameters when the terrain
classifier is trained. Therefore, it is important to
determine how much the restriction influences the
training of the new data. According to Table 2, the
accuracy of the result of training 4 is 94.4 % and
reduces accuracy by only 1.0 % from the result of
training 2. This result indicates that the restriction
does not result in a profound difference.

3.3.5 Comparison between Fine-tuning
with All the Data and EWC

From Tables 2 and 3 fine-tuning with all the
data achieves better performance than updating by
EWC. However, in fine-tuning with all the data,
the amount of data and computational cost in-
creases as rover moves. In contrast, Updating by
EWC does not require to keep all the data but only
new data. This keeps computational cost constant.
So if the rover does not move so much and does
not get a lot of data, fine-tuning method is ap-
plicable and better, however, if the rover travels
long distance and obtains a lot of data, updating
by EWC is better.

4 APPLICATION OF TERRAIN
CLASSIFICATION

In this section, we present an application of the
terrain classification, which is presented in sec-
tion 3. For wheeled rovers, determining whether

Table 2: Pixel accuracy result for environment A
Training number Percentage of correct pixels [%]

1 97.6
2 94.3
3 97.9
4 96.8

Table 3: Pixel accuracy result for environment B
Training number Percentage of correct pixels [%]

1 76.5
2 95.4
3 94.6
4 94.4



Figure 6: Segmented result for environment A (Input image:Figure 4(a))

Figure 7: Segmented result for environment B (Input image:Figure 4(b))

the surface is smooth or abundant with obstacles
is important for obtaining efficient and safe move-
ment. In order to determine the amount of rocks,
we divide the image obtained from the omni-
directional camera radially by 30 degrees from 0
to 360 degrees as the omni-directional camera has
a 360-degree field of view. We then calculate how
rocky the surface is using the following equation.

ratio =
NPRock

NPRock + NPGround
(5)

where NPRock is the number of pixels predicted as
rocks, and NPGround is the number of pixels pre-
dicted as part of the ground.

We applied this method to the segmented image.
The result is shown in Figures 8 and 9. From Fig-
ure 8, we can say that the forward area of the rover
is abundant with rocks and the rover should avoid
that area intuitively. The resulting image shows
that the forward area is rocky terrain and this re-
sult corresponds to the human intuition. Hence,
the rover can determine the direction to which the
rover should move by using resulting image to
move safely. From Figure 9, we can say same
thing. Although the accuracy of the classification
of the rock class is relatively low as compared to
the other classes because the small rocks or grav-
els cannot be recognized, the terrain classifier can
recognize large rocks that the rover should avoid.
Hence, this method will be useful for path plan-

ning of the rover missions.

5 CONCLUSION
In this paper, we presented two methods for updat-
ing the terrain classifier constructed using CNNs.
One method comprises fine-tuning with all the
data obtained until the training step. The other
method comprises updating using EWC with only
the new data. We evaluated these two updating
methods using image data obtained from an omni-
directional camera. The results showed that the
fine-tuning method provides a better performance
than that obtained while updating using EWC.
In terms of the computational cost, although the
fine-tuning method increases the computational
cost, updating using EWC does not increase the
computational cost because the method requires
only the new data. In addition, we presented an
application of terrain classification to determine
which direction the rover should move based on
the omni-directional camera image.
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